ELG2331: Tutorial for Chapter 4

P: 4.35:

From the problem, we have the angular frequency as $3000 \mathrm{rad} / \mathrm{s}$. First step is to find the reactive impedance of the inductor $L=190 \mathrm{mH}$:

$$
X_{L}=\omega L=3000 \times 190 \times 10^{-3}=0.57 \mathrm{k} \Omega
$$

Then find Z_{L} which will be equal to $j 0.57 \mathrm{k} \Omega$. Second step is to find the capacitive impedance of the capacitor $C=55 \mathrm{nF}$:

$$
X_{C}=\frac{1}{\omega C}=\frac{1}{3000 \times 55 \times 10^{-9}}=6.061 \mathrm{k} \Omega
$$

Then find $Z_{C}=-j 6.061 \mathrm{k} \Omega$.
Third step is to combine R_{1} with Z_{L} to be called $Z_{e q 1}$. The following combination is in rectangular form

$$
Z_{e q 1}=R_{1}+Z_{L}=2.3+j 0.57
$$

Convert the rectangular form into polar form. In the polar form we need the magnitude and the angle: $A \angle \theta$. In order to find the magnitude A we should do the following:

$$
\sqrt{2.3^{2}+0.57^{2}}=2.37
$$

The angle θ is found as:

$$
\tan ^{-1}\left(\frac{0.57}{2.3}\right)=13.92
$$

Now combine the magnitude and angle in the polar form to have $\mathrm{Z}_{\text {eq } 1}$ as: $2.37 \angle 13.92^{\circ}$ $\mathrm{k} \Omega$.
Follow the same procedure to find $Z_{\text {eq2 }}$ in rectangular form first and polar form second:

$$
Z_{e q 2}=R_{2}-j X_{C}=1.1-j 6,061=6.16 \angle-79.71^{\circ} \mathrm{k} \Omega
$$

Since $Z_{e q 1}$ and $Z_{\text {eq } 2}$ are in parallel, then their total equivalent impedance is

$$
\begin{aligned}
Z e q & =\frac{Z_{\text {eq } 1} \times Z_{\text {eq } 2}}{Z_{e q 1}+Z_{\text {eq } 2}}=\frac{\left(2.37 \angle 13.92^{\circ}\right)\left(6.16 \angle-79.71^{\circ}\right)}{(2.3+j 0.57)+(1.1-j 6.061)} \\
& =\frac{14.60 \angle-65.79^{\circ}}{3.4-j 5.491}=\frac{14.60 \angle-65.79}{6.458 \angle-58.23^{\circ}}=2.261 \angle-7.56^{\circ} \mathrm{k} \Omega
\end{aligned}
$$

You may convert the value of $Z_{e q}$ from polar form into rectangular form again. We will get: $Z_{\text {eq }}=2.241-j 0.297$. This is obtained by calculating $\left(2.261 \times \cos -7.56^{\circ}=2.241\right.$ as the real part) and ($2.262 \times \sin -7.56^{\circ}=-0.297$ as the imaginary part). This is a "capacitive load". A capacitive load means a load (Z) that has a resistance and a capacitance.

P4.52:

$$
\begin{aligned}
& \hline w=3 \mathrm{rad} / \mathrm{s}() \\
& V_{\mathrm{s}}=36 \angle-60^{\circ}(\text { polar form }) \\
& Z_{L 1}=j w L_{1}=j 3 \times 3=j 9 \Omega \\
& Z_{L 2}=j w L_{2}=j 3 \times 3=j 9 \Omega \\
& Z_{L 3}=j w L_{3}=j 3 \times 3=j 9 \Omega \\
& Z_{C}=\frac{1}{j w C}=\frac{1}{j 3 \times\left(\frac{1}{18}\right)}=-j 6 \Omega \\
& Z_{e q}=Z_{L 2} / / Z_{L 3}+Z_{C}=j 9 / /(j 9-j 6)=2.25 \angle 90^{\circ} \Omega \\
& Z_{T}=Z_{R}+Z_{L 1}+Z e q=9+j 9+j 2.25=9+j 11.25=14.4 \angle 51.34^{\circ} \Omega
\end{aligned}
$$

Now find the total current from the source I

$$
I=\frac{V_{S}}{Z_{T}}=\frac{36 \angle-60^{\circ}}{14.4 \angle 51.34^{\circ}}=2.499 \angle-111.34^{\circ} \mathrm{A}
$$

Find the voltage across $Z_{e q}$

$$
V_{e q}=I Z_{e q}=\left(2.499 \angle-111.34^{\circ}\right)\left(2.25 \angle 90^{\circ}\right)=5.623 \angle-21.34^{\circ} \mathrm{V}
$$

We will perform voltage divider between $Z_{L 3}$ and Z_{C} to find V

$$
V=\left(\frac{Z_{C}}{Z_{C}+Z_{L 3}}\right) V_{e q}=\left(\frac{-j 6}{j 9-j 6}\right)\left(5.623 \angle-21.34^{\circ}\right)=11.25 \angle 158.66^{\circ} \mathrm{V}
$$

Now convert this value into time domain

$$
v(t)=11.25 \cos \left(3 t-158.66^{\circ}\right) \mathrm{V}
$$

P4.53:

This is a current divider problem

$$
\begin{aligned}
& w=2 \mathrm{rad} / \mathrm{s} \\
& Z_{L 2}=j \omega L_{2}=j 2 \times 10=j 20 \Omega \\
& Z_{L 3}=j 2 \times 1=j 2 \Omega \\
& Z_{C}=\frac{1}{j \omega C}=-j \Omega \\
& I=\left(\frac{Z_{L 2}+Z_{C}}{\left(Z_{L 2}+Z_{C}\right)+\left(R+Z_{L 3}\right)}\right) I_{S}=\left(\frac{j 20-j}{(j 20-j)+(5+j 2)}\right) \times 6 \angle 0^{\circ}=5.28 \angle 13.4^{\circ} \mathrm{A} \\
& i(t)=5.28 \cos \left(2 t+13.4^{\circ}\right) \mathrm{A}
\end{aligned}
$$

P4.57:

In this circuit we have two meshes.
First find Z_{C} and Z_{L}
$Z_{C}=\frac{1}{j 1500 \times 10^{-6}}=-j 666.7 \Omega$
$Z_{L}=j(1500)(0.5)=j 750 \Omega$
Apply KVL in the first loop

$$
-V_{S}+R_{1} I_{1}+Z_{C}\left(I_{1}-I_{2}\right)=0
$$

Apply KVL in the second loop

$$
Z_{L} I_{2}+I_{2} R_{2}+Z_{C}\left(I_{2}-I_{1}\right)=0
$$

Substitute values and find I_{1} and I_{2}

Answer in phasor form:

$$
\begin{aligned}
& I_{1}=3.8 \times 10^{-3} \angle 46.6^{\circ} \mathrm{A} \\
& I_{2}=19.6 \times 10^{-3} \angle-83.2^{\circ} \mathrm{A}
\end{aligned}
$$

Write the answer in time domain

P4.58

We have a circuit with a current source. Also, the requirement is to find v_{1} and v_{2}. In such case, it is better and easier to apply KCL.

First, find the capacitive impedance Z_{C} and the inductive impedance Z_{L}

$$
\begin{aligned}
& Z_{C}=\frac{1}{j \omega C}=\frac{-j}{100 \times 500 \times 10^{-6}}=-j 20 \Omega \\
& Z_{L}=j \omega L=j 100 \times 0.2=j 20 \Omega
\end{aligned}
$$

Apply KCL at node 1 , we have three currents joining at the node, namely: I_{S}; current through R_{1} (assume its direction from v_{1} toward the reference); and current through the capacitor (assume its direction from v_{1} to v_{2})

$$
\begin{aligned}
& I_{S}=\frac{V_{1}}{R_{1}}+\frac{V_{1}-V_{2}}{Z_{C}}=\left(\frac{1}{R_{1}}+\frac{1}{Z_{C}}\right) V_{1}-\frac{1}{Z_{C}} V_{2} \\
& 40 \angle 0^{\circ}=\left(\frac{1}{R_{1}}+\frac{j}{20}\right) V_{1}-\frac{j}{20} V_{2}
\end{aligned}
$$

Now apply KCL at node 2, we have three currents joining at the node, namely: current through the capacitor (assume its direction from v_{1} to v_{2}); current through R_{2} (assume its direction from v_{2} toward the reference); and current through the inductor (assume its direction from v_{2} toward the reference)

$$
\begin{aligned}
& \frac{V_{1}-V_{2}}{Z_{C}}=\frac{V_{2}}{R_{2}}+\frac{V_{2}}{Z_{L}} \\
& \frac{V_{1}}{Z_{C}}=\left(\frac{1}{R_{2}}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right) V_{2} \\
& j \frac{V_{1}}{20}=\left(\frac{1}{10}-j \frac{1}{20}+j \frac{1}{20}\right) V_{2} \\
& j \frac{V_{1}}{20}=\left(\frac{1}{10}\right) V_{2} \\
& V_{1}=-j 2 V_{2}
\end{aligned}
$$

Now, substitute the values and find V_{1} and V_{2}.

Answers in phasor form:

$$
\begin{aligned}
& V_{1}=565.7 \angle-45^{\circ} \mathrm{V} \\
& V_{2}=282.85 \angle 45^{\circ} \mathrm{V}
\end{aligned}
$$

Write them in time domain:

