ELG2331: Tutorial for Chapter 4

P: 4.35:

From the problem, we have the angular frequency as 3000 rad/s. First step is to find the reactive impedance of the inductor L = 190 mH:

$$X_I = \omega L = 3000 \times 190 \times 10^{-3} = 0.57 \text{ k}\Omega$$

Then find Z_L which will be equal to $j0.57 \text{ k}\Omega$. Second step is to find the capacitive impedance of the capacitor C = 55 nF:

 $X_C = \frac{1}{\omega C} = \frac{1}{3000 \times 55 \times 10^{-9}} = 6.061 \,\mathrm{k\Omega}$

Then find $Z_C = -i6.061 \text{ k}\Omega$.

Third step is to combine R_1 with Z_L to be called Z_{eq1} . The following combination is in rectangular form

$$Z_{ea1} = R_1 + Z_L = 2.3 + j0.57$$

Convert the rectangular form into polar form. In the polar form we need the magnitude and the angle: $A \angle \theta$. In order to find the magnitude A we should do the following:

 $\sqrt{2.3^2 + 0.57^2} = 2.37$

The angle θ is found as:

$$\tan^{-1}\left(\frac{0.57}{2.3}\right) = 13.92$$

Now combine the magnitude and angle in the polar form to have Z_{eq1} as: 2.37 $\angle 13.92^{\circ}$ k Ω .

Follow the same procedure to find Z_{eq2} in rectangular form first and polar form second:

 $Z_{eq2} = R_2 - jX_C = 1.1 - j6,061 = 6.16 \angle -79.71^o \text{ k}\Omega$

Since Z_{eq1} and Z_{eq2} are in parallel, then their total equivalent impedance is

$Zeq = \frac{Z_{eq1} \times Z_{eq2}}{Z_{eq1} + Z_{eq2}} = \frac{(2.37 \angle 13.92^{\circ})(6.16 \angle -79.71^{\circ})}{(2.3 + j0.57) + (1.1 - j6.061)}$	
$=\frac{14.60\angle -65.79^{\circ}}{3.4-j5.491}=\frac{14.60\angle -65.79}{6.458\angle -58.23^{\circ}}=2.261\angle -7.56^{\circ} \text{ k}\Omega$	

You may convert the value of Z_{eq} from polar form into rectangular form again. We will get: $Z_{eq} = 2.241 - j0.297$. This is obtained by calculating $(2.261 \times \cos -7.56^\circ = 2.241$ as the real part) and $(2.262 \times \sin -7.56^\circ = -0.297)$ as the imaginary part). This is a "**capacitive load**". A capacitive load means a load (*Z*) that has a resistance and a capacitance.

w = 3 rad/s () $V_{s} = 36 \angle -60^{\circ} \text{ (polar form)}$ $Z_{L1} = jwL_{1} = j3 \times 3 = j9\Omega$ $Z_{L2} = jwL_{2} = j3 \times 3 = j9\Omega$ $Z_{L3} = jwL_{3} = j3 \times 3 = j9\Omega$ $Z_{C} = \frac{1}{jwC} = \frac{1}{j3 \times \left(\frac{1}{18}\right)} = -j6\Omega$ $Z_{eq} = Z_{L2} // Z_{L3} + Z_{C} = j9 // (j9 - j6) = 2.25 \angle 90^{\circ}\Omega$ $Z_{T} = Z_{R} + Z_{L1} + Zeq = 9 + j9 + j2.25 = 9 + j11.25 = 14.4 \angle 51.34^{\circ}\Omega$

Now find the total current from the source *I*

$$I = \frac{V_S}{Z_T} = \frac{36\angle -60^\circ}{14.4\angle 51.34^\circ} = 2.499\angle -111.34^\circ \text{A}$$

Find the voltage across Z_{eq}

$$V_{eq} = IZ_{eq} = (2.499 \angle -111.34^{\circ})(2.25 \angle 90^{\circ}) = 5.623 \angle -21.34^{\circ} V$$

We will perform voltage divider between Z_{L3} and Z_C to find V

$$V = \left(\frac{Z_C}{Z_C + Z_{L3}}\right) V_{eq} = \left(\frac{-j6}{j9 - j6}\right) \left(5.623 \angle -21.34^o\right) = 11.25 \angle 158.66^o \text{ V}$$

Now convert this value into time domain

 $v(t) = 11.25\cos(3t - 158.66^{\circ})$ V

P4.53:

This is a current divider problem

$$w = 2 \operatorname{rad/s}$$

$$Z_{L2} = j\omega L_2 = j2 \times 10 = j20\Omega$$

$$Z_{L3} = j2 \times 1 = j2\Omega$$

$$Z_C = \frac{1}{j\omega C} = -j\Omega$$

$$I = \left(\frac{Z_{L2} + Z_C}{(Z_{L2} + Z_C) + (R + Z_{L3})}\right) I_S = \left(\frac{j20 - j}{(j20 - j) + (5 + j2)}\right) \times 6\angle 0^\circ = 5.28\angle 13.4^\circ \operatorname{A}$$

$$i(t) = 5.28 \cos (2t + 13.4^\circ) \operatorname{A}$$

P4.57:

In this circuit we have two meshes. First find Z_C and Z_I

	$Z_C = \frac{1}{j1500 \times 10^{-6}} = -j666.7\Omega$
	$Z_L = j(1500)(0.5) = j750\Omega$
Apply KVL in the first loop	
	$-V_S + R_1 I_1 + Z_C (I_1 - I_2) = 0$
Apply KVL in the second loop)
	$Z_L I_2 + I_2 R_2 + Z_C (I_2 - I_1) = 0$
Substitute values and find I_1 are	ad I_2

Answer in phasor form:

 $I_1 = 3.8 \times 10^{-3} \angle 46.6^{\circ} \text{ A}$ $I_2 = 19.6 \times 10^{-3} \angle -83.2^{\circ} \text{ A}$

Write the answer in time domain

P4.58

We have a circuit with a current source. Also, the requirement is to find v_1 and v_2 . In such case, it is better and easier to apply KCL.

First, find the capacitive impedance Z_C and the inductive impedance Z_L

$7_{a} - \frac{1}{a} - \frac{1}{a}$	-j – $-i200$
$2C - j\omega C - 1$	$00 \times 500 \times 10^{-6}$
$Z_L = j\omega L = j1$	$00 \times 0.2 = j20\Omega$

Apply KCL at node 1, we have three currents joining at the node, namely: I_S ; current through R_1 (assume its direction from v_1 toward the reference); and current through the capacitor (assume its direction from v_1 to v_2)

$$I_{S} = \frac{V_{1}}{R_{1}} + \frac{V_{1} - V_{2}}{Z_{C}} = \left(\frac{1}{R_{1}} + \frac{1}{Z_{C}}\right)V_{1} - \frac{1}{Z_{C}}V_{2}$$
$$40 \ge 0^{o} = \left(\frac{1}{R_{1}} + \frac{j}{20}\right)V_{1} - \frac{j}{20}V_{2}$$

Now apply KCL at node 2, we have three currents joining at the node, namely: current through the capacitor (assume its direction from v_1 to v_2); current through R_2 (assume its direction from v_2 toward the reference); and current through the inductor (assume its direction from v_2 toward the reference)

	$\frac{V_1 - V_2}{Z_C} = \frac{V_2}{R_2} + \frac{V_2}{Z_L}$	
	$\frac{V_1}{Z_C} = \left(\frac{1}{R_2} + \frac{1}{Z_L} + \frac{1}{Z_C}\right) V_2$	
	$j\frac{V_1}{20} = \left(\frac{1}{10} - j\frac{1}{20} + j\frac{1}{20}\right)V_2$	
	$j\frac{V_1}{20} = \left(\frac{1}{10}\right)V_2$	
	$V_1 = -i2V_2$	

Now, substitute the values and find V_1 and V_2 .

Answers in phasor form:

$$V_1 = 565.7 \angle -45^o \text{ V}$$

 $V_2 = 282.85 \angle 45^o \text{ V}$

Write them in time domain: