ELG2331: Chapter 7

7.2) The resistance of the heating element is

$$
R=\frac{\widetilde{V}^{2}}{P}=\frac{240^{2}}{1000}=57.6 \Omega
$$

7.5) The power dissipated by the circuit is

$$
\begin{aligned}
& P=V I \cos \theta=110 \times 4 \times \cos 60^{\circ}=220 \mathrm{~W} \\
& \mathrm{PF}=\cos 60^{\circ}=0.5
\end{aligned}
$$

7.6) The rms current is

$$
\begin{aligned}
& \widetilde{I}=\frac{P}{\widetilde{V} \cos \theta}=\frac{1200}{120 \times 0.8}=12.5 \\
& \theta=\cos ^{-1}(0.8)=36.87^{\circ} \text { (The phase angle) } \\
& Z=\frac{\widetilde{V}}{\widetilde{I}}=\frac{120}{12.5}=9.6 \Omega \\
& R=Z \cos \theta=9.6 \times 0.8=7.68 \Omega
\end{aligned}
$$

7.15 a) The apparent power supplied by the source

$$
S=\frac{\widetilde{V}^{2}}{Z}=\frac{\widetilde{V}_{2}}{\sqrt{\left(R+R_{L}\right)^{2}+X_{L}^{2}}}=\frac{230^{2}}{\sqrt{26^{2}+37.7^{2}}}=1.155 \mathrm{VA}
$$

b) In order to find the power delivered to the load we should find first the current through the load which is same as the current I_{s}

$$
\tilde{I}_{S}^{2}=\frac{\widetilde{V}}{Z}=\frac{230}{26^{2}+37.7}=5 \mathrm{~A}
$$

Now find the apparent power through the load

$$
S_{L}=\widetilde{I}_{S}^{2} Z_{L}=(5)^{2} \times \sqrt{25^{2}+37.7^{2}}=1.141 \mathrm{kVA}
$$

c) The power factor of the load may be calculated from the impedance triangle

$$
\mathrm{PF}=\cos \theta=\frac{R_{L}}{Z_{L}}=\frac{25}{45.2}=0.55
$$

This power factor is quite low!
7.16 a) Find first X_{L} and X_{C}. Both are equal to 26.6 ohms

$$
S=\frac{\widetilde{V}^{2}}{Z}=\frac{\widetilde{V}^{2}}{\sqrt{\left(R+R_{L}\right)^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{230^{2}}{\sqrt{26^{2}+(26.5-26.5)^{2}}}=2 \mathrm{kVA}
$$

b) Since $X_{L}=X_{C}$

$$
P=\frac{\widetilde{V}^{2}}{25+1}=\frac{230^{2}}{26}=2 \mathrm{~kW}
$$

c) Since $X_{L}=X_{C}$, it means we have a resistive load, accordingly the power factor is 1 !
7.17) The apparent power is

$$
S=\frac{\widetilde{V}^{2}}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}=\frac{50^{2}}{\sqrt{20^{2}+26.5^{2}}}=75.3 \mathrm{VA}
$$

The real power is

$$
P=S \cdot \cos \theta=75.3 \times \frac{20}{33.2}=45.36 \mathrm{~W}
$$

The reactive power is

$$
Q=\sqrt{S^{2}-P^{2}}=\sqrt{75.3^{2}-45.36^{2}}=-60 \mathrm{VAR}
$$

The angle is

$$
\theta=\cos ^{-1}\left(\frac{R}{Z}\right)=53^{\circ}
$$

The power triangle is shown

