Consider the small-signal amplifier shown in Figure 1. Assume $V_{C C}=24 \mathrm{~V}, R_{S}=1.5 \mathrm{k} \Omega, R_{1}=8.6 \mathrm{k} \Omega, R_{2}=$ $200 \mathrm{k} \Omega, R_{\mathrm{C}}=5 \mathrm{k} \Omega, R_{\mathrm{L}}=2 \mathrm{k} \Omega, \beta=75$, and $\pi=750 \Omega$.

- Draw the DC bias circuit and prove that the BJT operates in the active region.
- Draw the small-signal equivalent circuit and find the voltage gain of the amplifier.

Figure 1 A stage of an amplifier circuit.

Solution: A DC current is supplied to the BJT base by the voltage divider R_{1} and R_{2}. The coupling capacitors act as blocks to the DC current; therefore the equivalent circuit at DC is as shown in Figure 2 (a). Although, practically there is one power supply, the $V_{C C}$ symbol can be replaced with two voltage sources. The circuit in Figure 2 (a) can further be reduced to the circuit shown in Figure 2 (b) by converting the voltage divider to a Thevenin equivalent circuit (Thevenin theorem can be found in your textbook: pp. 102109). The symbol $V_{B B}$ is used for the open-circuit voltage at the base of the BJT.

Figure 2 (a) DC bias circuit. (b) Equivalent of the input portion.

Step One: The DC analysis

The open-circuit base DC bias voltage is

	$V_{B B}=24 \times \frac{8.6}{8.6+200}=0.99 \mathrm{~V}$	

The DC output impedance of the bias network is

	$R_{B}=8.6 / / 200=8.25 \mathrm{k} \Omega$	

A silicon transistor requires a threshold voltage of $V_{B E}=0.7 \mathrm{~V}$ to turn ON the base-emitter junction, therefore

	$I_{\mathrm{B}}=\frac{V_{B B}-0.7}{R_{B}}=\frac{0.99-0.7}{8.25 \mathrm{k} \Omega}=35.1 \mu \mathrm{~A}$	
	$I_{C}=\beta I_{\mathrm{B}}=75 \times 35.1 \times 10^{-6}=2.63 \mathrm{~mA}$	

Now consider the closed loop path in the output circuit of the amplifier and apply KVL in order to find the collector-emitter voltage $V_{C E}$.

	$-V_{C C}+I_{C} R_{C}+V_{C E}=0$	
	$V_{C E}=24-5 \times 2.63=10.8 \mathrm{~V}$	

Therefore, the BJT is operating in the active region.

Step Two: AC Analysis

All capacitors are replaced by short circuit. The voltage source v_{S} and its internal resistance R_{S} are replaced by a current source $\left(v_{S} / R_{S}\right)$ according to Source Transformation theorem (see page 112 of the textbook)

Figure 3: Small-signal circuit of the BJT amplifier.
Consider the circuit in stage one, first.

- Let us find the equivalent resistance of the four resistors: $1.5,200,8.6$, and 0.75

$$
\begin{aligned}
& \frac{1}{R_{T}}=\frac{1}{1.5}+\frac{1}{200}+\frac{1}{8.6}+\frac{1}{0.75} \\
& R_{T}=0.472 \mathrm{k} \Omega
\end{aligned}
$$

Stage one circuit will turn into the following circuit

Figure 4: Equivalent circuit of stage-one circuit.

$$
v_{i}=\frac{\mathrm{v}_{\mathrm{S}}}{1.5} \times R_{T}=0.314 v_{S}
$$

This value of v_{i} is same across each element in the circuit of Figure 3. Now, apply ohm's law to find i_{b}

$$
i_{b}=\frac{v_{i}}{r_{\pi}}=\frac{0.314 v_{S}}{0.75}=0.416 v_{S}
$$

Now, consider stage two circuit

$$
v_{\text {out }}=-75 i_{b} \times(2 / / 5)=-75 \times 0.416 v_{S} \times 1.42=-44.6 v_{S}
$$

Accordingly, the gain is $v_{\text {out }} / v_{S}=-44.6$. The (-) sign is an indication for the counterclockwise direction of current in stage-two circuit.

