ELG3331: Tutorial for Chapter 9

Problem 9.11

$$I_{F \max} = \frac{50\sqrt{2} - 0.7}{220} = 318 \text{ mA}$$

 $V_{\text{Rev}} = 50\sqrt{2} = 70.7 \text{ V}$

Problem 9.26

The capacitor will charge to 5 V - 0.7 V = 4.3 V. Accordingly, the average value of the output will be 4.3 V.

Problem 28

Problem 9.32

At $\omega t = 0$, D_1 is on and when $\omega t = \pi$, D_1 is off and the reverse voltage across it maximum. $V_s = 170 \times 0.1 = 17$ V

KVL:

V .	$+ V_{-}$	$+ V_{-}$	-0
V s1	$\top V D1$	$\top \prime L$	-0

At $\omega t = 0$, $V_P = 17-0.7 = 16.3$ V At $\omega t = \pi$, $V_{D1} = -17-16.3 = -33.3$ V

The actual peak reverse voltage (33.3 V) is greater than the rated peak reverse voltage (30 V). Therefore, the diodes are not suitable for the specificatiob

Problem 9.37

$V_s = V_{line} = 50\cos(\omega t)$	
$V_{sp} = 50 \text{ V}$	

= 48.6 V

At $\omega t = 0$ (D_1 and D_3 are conducting) and D_2 and D_4 are off.

KVL: Consider $V_{D1} = V_{D2} =$	0.7 V
	$-V_s + V_{D1} + V_L + V_{D2} = 0$

At $\omega t = \pi$

$V_{D1}(\pi) + V_{D3}(\pi) = -V_s - V_m$
$V_{D1} = V_{D3}$
$V_{D13} = \frac{-50 - 48.6}{2} = -49.3 \mathrm{V}$