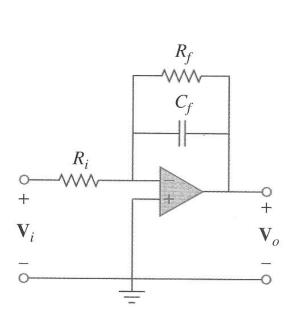
ELG3336: Op Amp-based Active Filters

• Advantages:

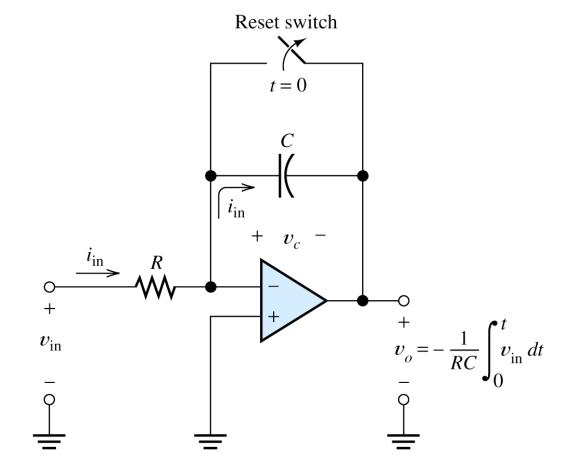
- Reduced size and weight, and therefore parasitics.
- Increased reliability and improved performance.
- Simpler design than for passive filters and can realize a wider range of functions as well as providing voltage gain.
- In large quantities, the cost of an IC is less than its passive counterpart.
- Disadvantages:
 - Limited bandwidth of active devices limits the highest attainable pole frequency and therefore applications above 100 kHz (passive RLC filters can be used up to 500 MHz).
 - The achievable quality factor is also limited.
 - Require power supplies (unlike passive filters).
 - Increased sensitivity to variations in circuit parameters caused by environmental changes compared to passive filters.
- For applications, particularly in voice and data communications, the economic and performance advantages of active RC filters far outweigh their disadvantages.

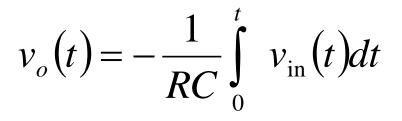
First-Order Low-Pass Filter



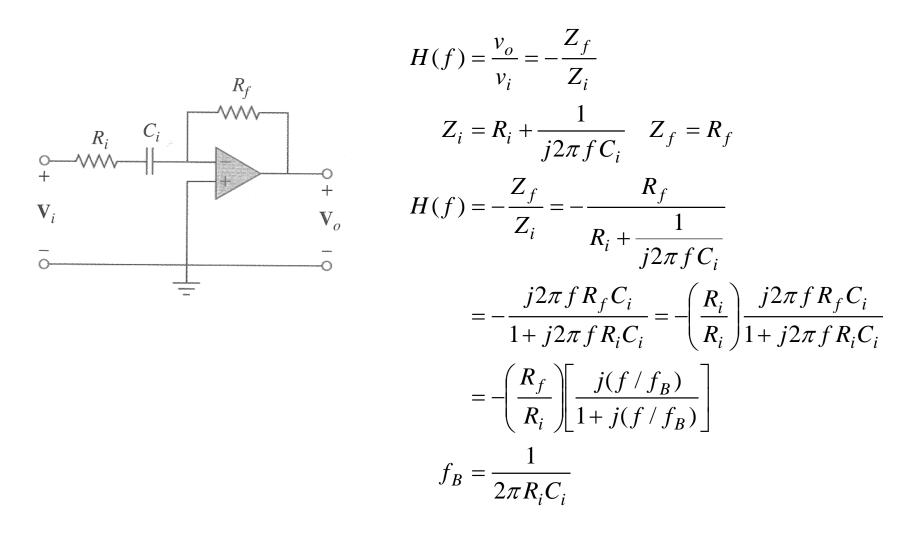
$$\begin{split} H(f) &= \frac{V_o}{V_i} = -\frac{Z_f}{Z_i} \\ &\frac{1}{Z_f} = \frac{1}{R_f} + \frac{1}{\frac{1}{j2\pi f C_f}} = \frac{1}{R_f} + \frac{j2\pi f R_f C_f}{R_f} \\ &Z_f = \frac{R_f}{1 + j2\pi f R_f C_f} \\ H(f) &= -\frac{Z_f}{Z_i} = -\left(\frac{R_f}{R_i}\right) \frac{1}{1 + j2\pi f R_f C_f} \\ &= -\left(\frac{R_f}{R_i}\right) \left[\frac{1}{1 + j(f/f_B)}\right] \\ &f_B = \frac{1}{2\pi R_f C_f} \end{split}$$

A low-pass filter with a dc gain of $-R_f/R_i$



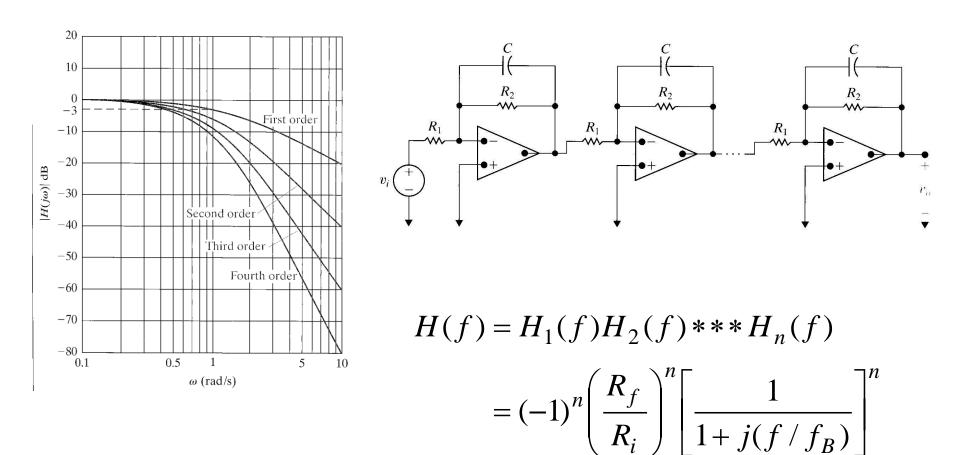


First-Order High-Pass Filter

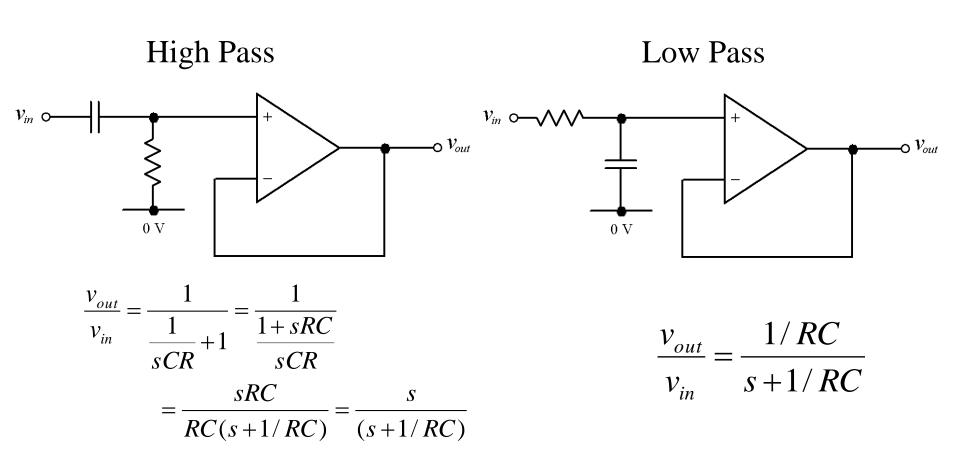


A high-pass filter with a high frequency gain of $-R_f/R_i$

Higher Order Filters



Single-Pole Active Filter Designs

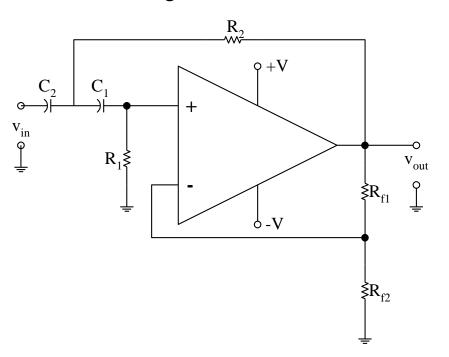


Two-Pole (Sallen-Key) Filters

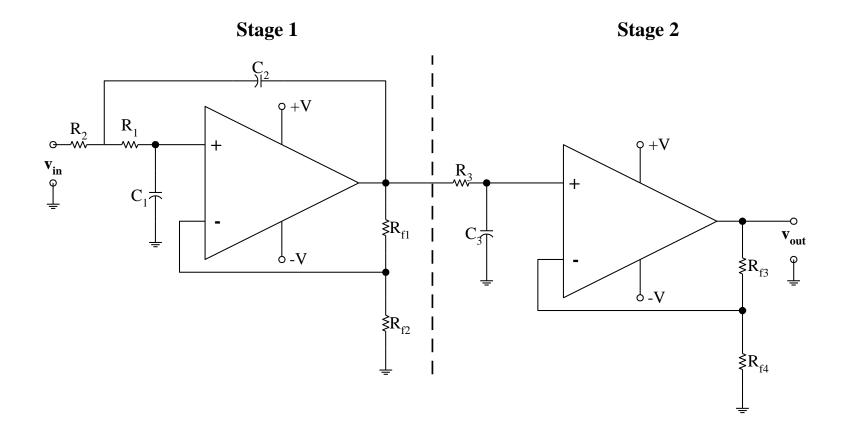
 $\varphi + V$ R_1 R₂ -w-Θ-∽ +v_{in} Ģ -0 $C_1 \uparrow$ V_{out} ļ ≹R_{f1} ÷ o-∧ **≹**R_{f2} ÷

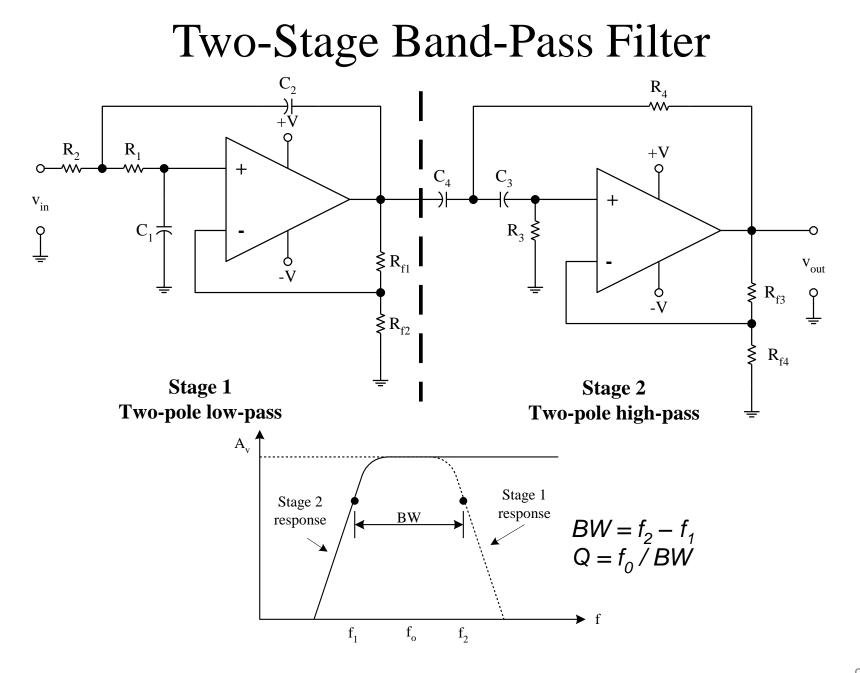
Low Pass Filter

High Pass Filter

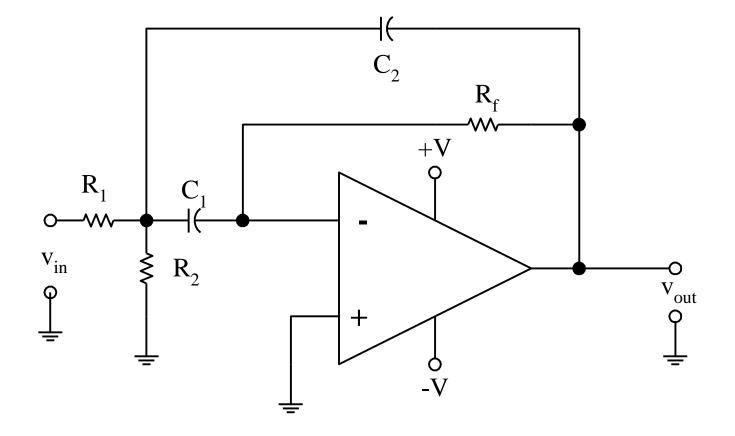


Three-Pole Low-Pass Filter

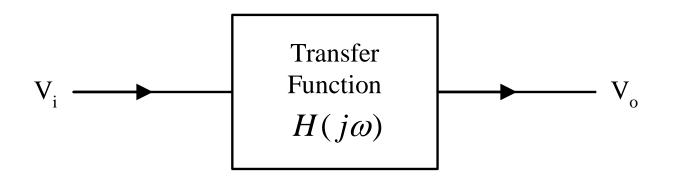




Multiple-Feedback Band-Pass Filter



Transfer function $H(j\omega)$



$$H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)} \qquad |H| = \sqrt{\operatorname{Re}(H)^2 + \operatorname{Im}(H)^2}$$
$$H = \operatorname{Re}(H) + j\operatorname{Im}(H) \qquad \angle H = \tan^{-1}\left(\frac{\operatorname{Im}(H)}{\operatorname{Re}(H)}\right) \qquad \operatorname{Re}(H) \succ 0$$

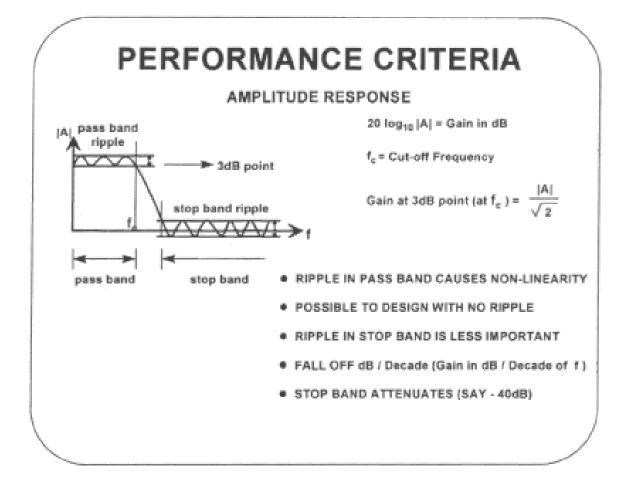
$$\angle H = 180^{\circ} + \tan^{-1} \left(\frac{\operatorname{Im}(H)}{\operatorname{Re}(H)} \right) \quad \operatorname{Re}(H) \prec 0$$

Corner Frequency

• The significance of the break frequency is that it represents the frequency where

$$A_v(f) = 070.7 \angle -45^\circ$$

- This is where the output of the transfer function has an amplitude 3-dB below the input amplitude, and the output phase is shifted by -45° relative to the input.
- Therefore, f_c is also known as the **3-dB frequency** or the **corner frequency**.

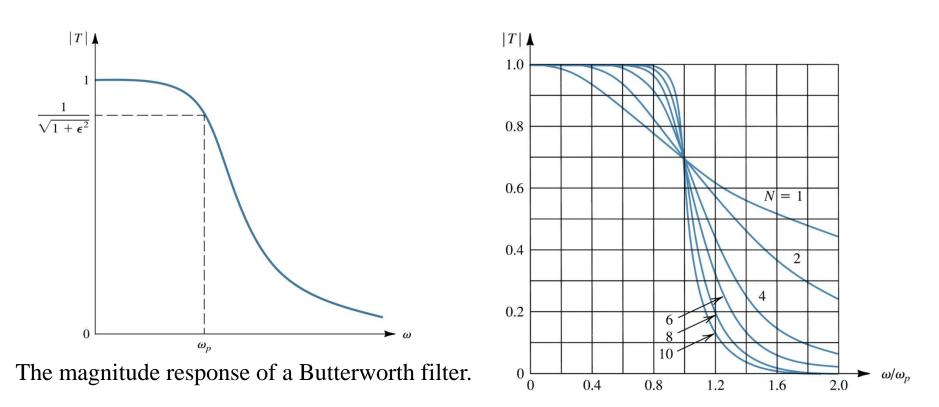


Bode plots use a logarithmic scale for frequency, where a *decade* is defined as a range of frequencies where the highest and lowest frequencies differ by a factor of 10.

Real Filters

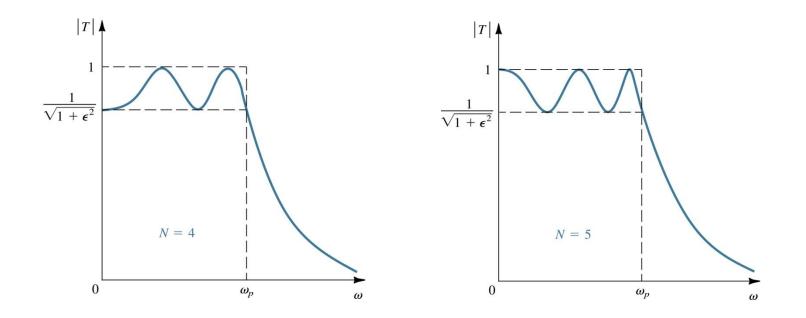
- Butterworth Filters
 - Flat Pass-band.
 - 20*n* dB per decade roll-off.
- Chebyshev Filters
 - Pass-band ripple.
 - Sharper cut-off than Butterworth.
- Elliptic Filters
 - Pass-band and stop-band ripple.
 - Even sharper cut-off.
- Bessel Filters
 - Linear phase response i.e. no signal distortion in pass-band.

Butterworth Filters



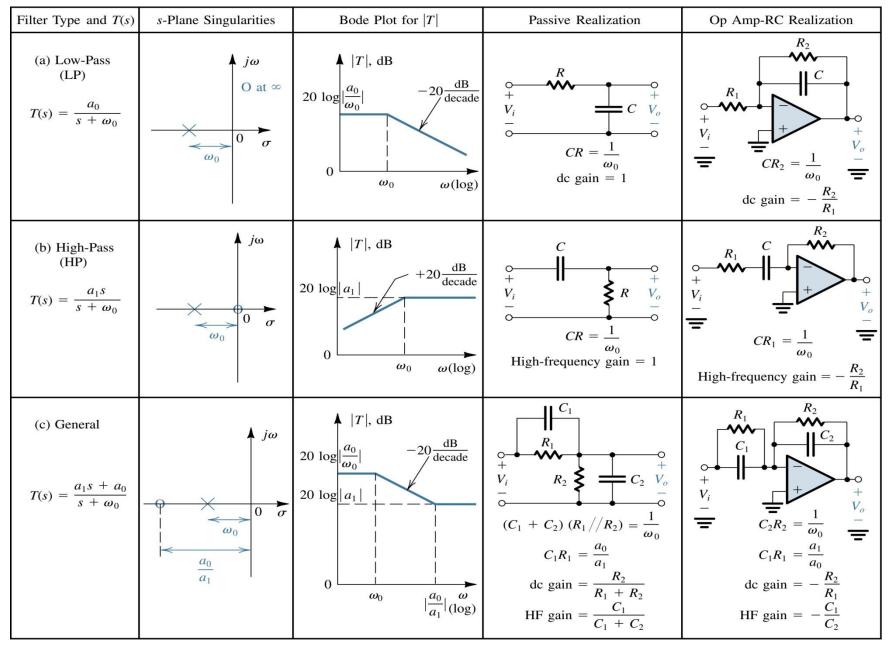
Magnitude response for Butterworth filters of various order with $\varepsilon = 1$. Note that as the order increases, the response approaches the ideal brickwall type transmission.

Chebyshev Filters

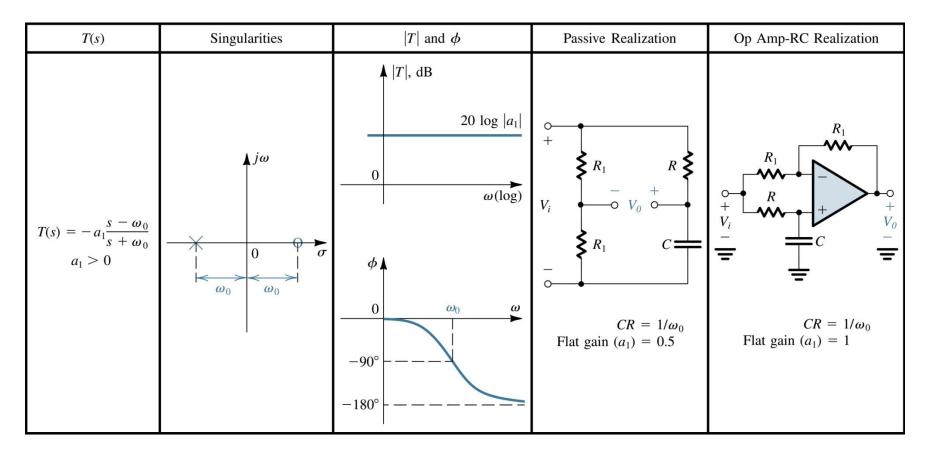


Sketches of the transmission characteristics of a representative even- and oddorder Chebyshev filters.

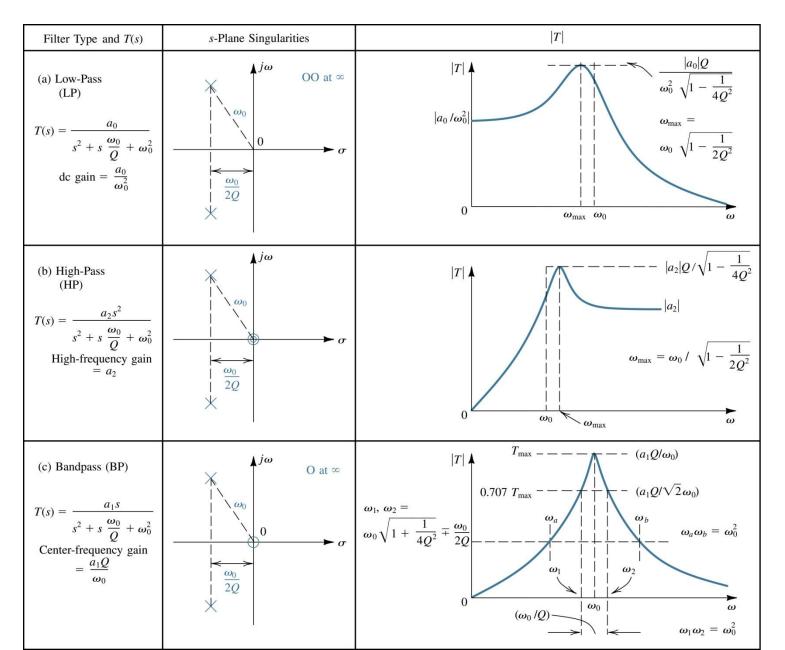
First-Order Filter Functions



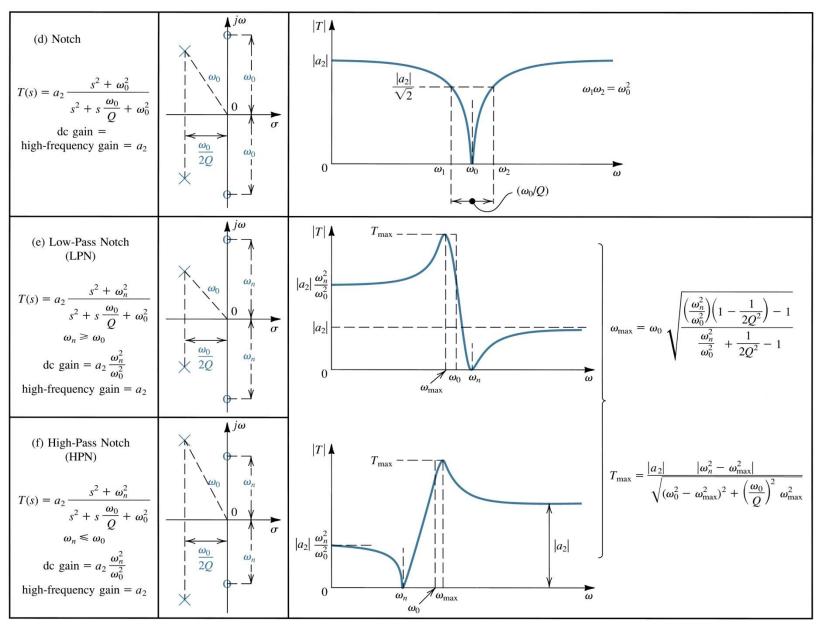
First-Order Filter Functions



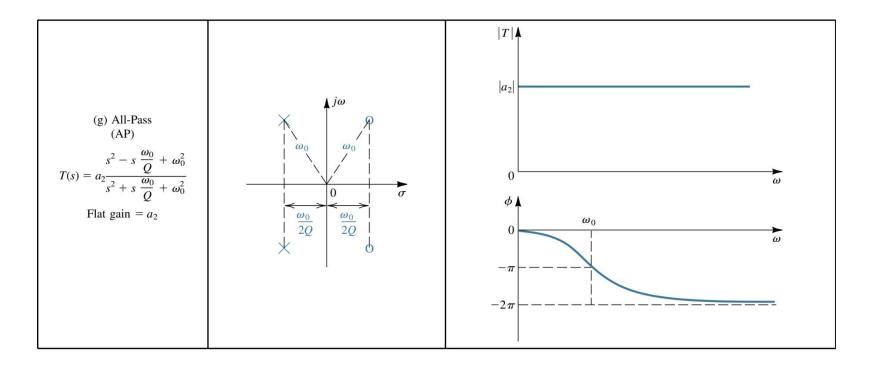
Second-Order Filter Functions



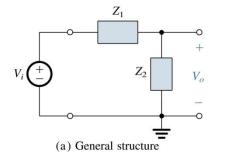
Second-Order Filter Functions

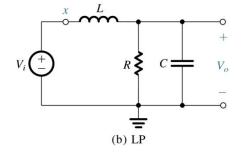


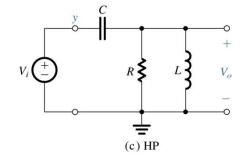
Second-Order Filter Functions

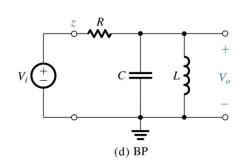


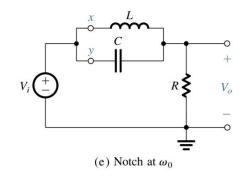
Second-Order LCR Resonator

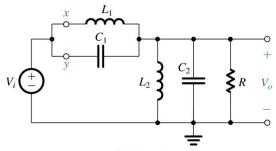


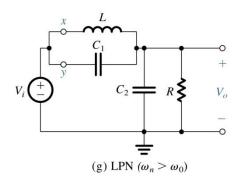


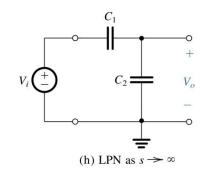


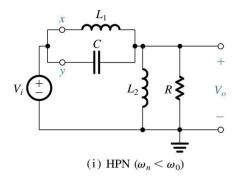




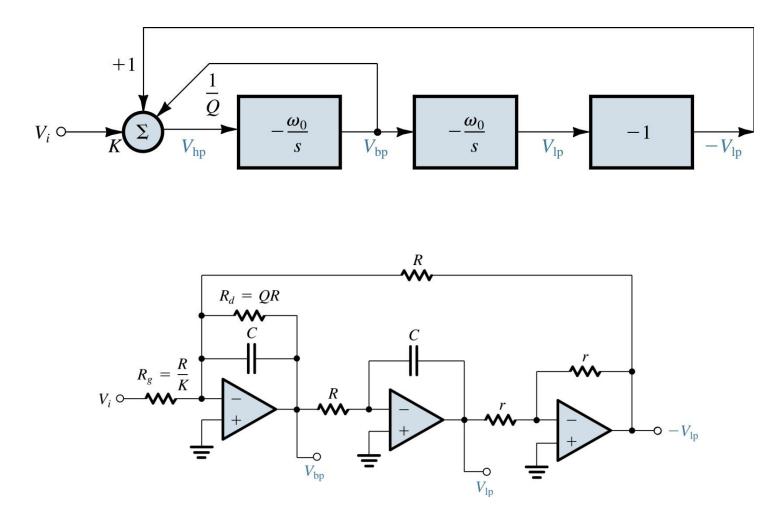






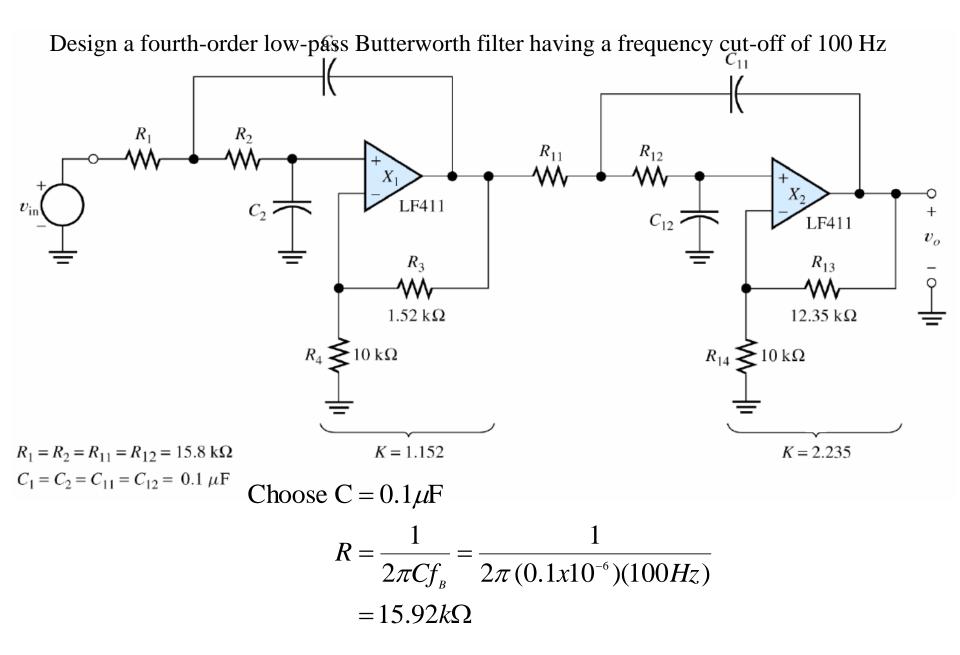


Second-Order Active Filter: Two-Integrator-Loop

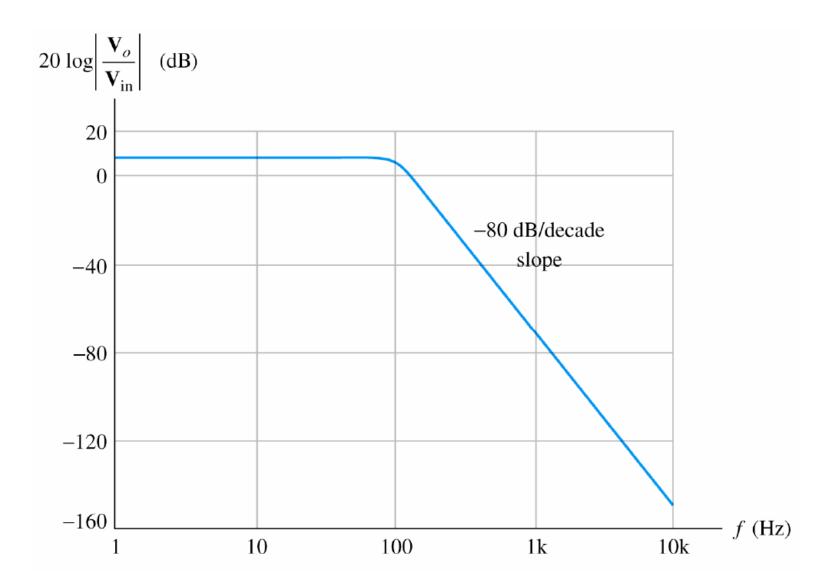


Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a single-ended fashion. The resulting circuit in (b) is known as the Tow-Thomas biquad.

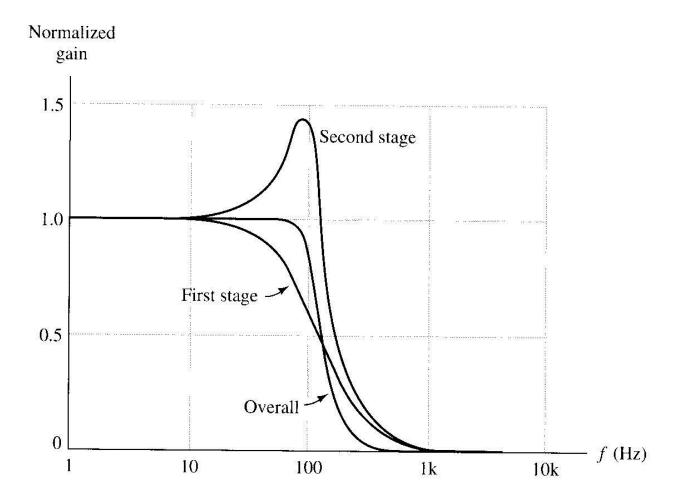
Low-Pass Active Filter Design



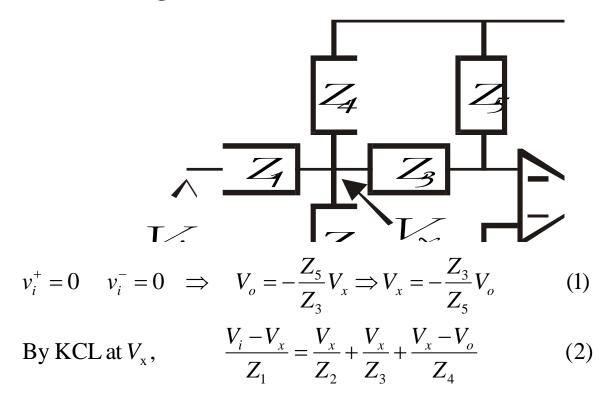
Low-Pass Active Filter Design



Low-Pass Active Filter Design



Infinite-Gain Multiple-Feedback (IGMF) Negative Feedback Active Filter



Substitute (1) into (2) gives

$$\frac{V_i}{Z_1} + \frac{Z_3}{Z_1 Z_5} V_o = -\frac{Z_3}{Z_5 Z_2} V_o - \frac{V_o}{Z_5} - \frac{Z_3}{Z_4 Z_5} V_o - \frac{V_o}{Z_4}$$
(3)

rearranging equation (3), it gives,

$$H = \frac{V_{o}}{V_{i}} = -\frac{\frac{1}{Z_{1}Z_{3}}}{\frac{1}{Z_{5}}\left(\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{1}{Z_{3}} + \frac{1}{Z_{4}}\right) + \frac{1}{Z_{3}Z_{4}}}$$

Or in admittance form:

$$H = \frac{V_o}{V_i} = -\frac{Y_1 Y_3}{Y_5 (Y_1 + Y_2 + Y_3 + Y_4) + Y_3 Y_4}$$

Filter Value	Z_1	Z_2	Z_3	Z_4	Z_5
LP	R_1	C_2	R_3	R_4	C_5
HP	C_1	R_2	C_3	C_4	R_5
BP	R_1	R_2	<i>C</i> ₃	C_4	R_5

IGMF Band-Pass Filter

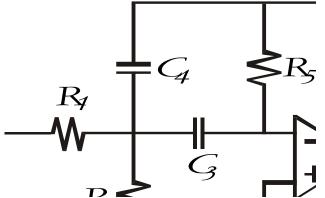
Band-pass:
$$H(s) = K \frac{s}{s^2 + as + b}$$

To obtain the band-pass response, we let

$$Z_{1} = R_{1} \qquad Z_{2} = R_{2} \qquad Z_{3} = \frac{1}{j\omega C_{3}} = \frac{1}{sC_{3}} \qquad Z_{4} = \frac{1}{j\omega C_{4}} = \frac{1}{sC_{4}} \qquad Z_{5} = R_{5}$$

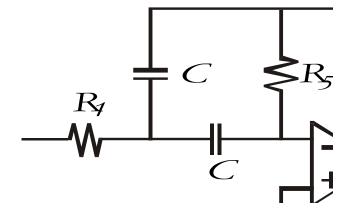
$$H(s) = -\frac{R_1}{s^2 C_3 C_4 + s \frac{C_3 + C_4}{R_5} + \frac{1}{R_5} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

This filter prototype has a very low sensitivity to component tolerance when compared with other prototypes.



Simplified Design (IGMF Filter)

$$H(s) = -\frac{\frac{sC}{R_1}}{\frac{1}{R_1R_5} + s\frac{2C}{R_5} + s^2C^2}$$



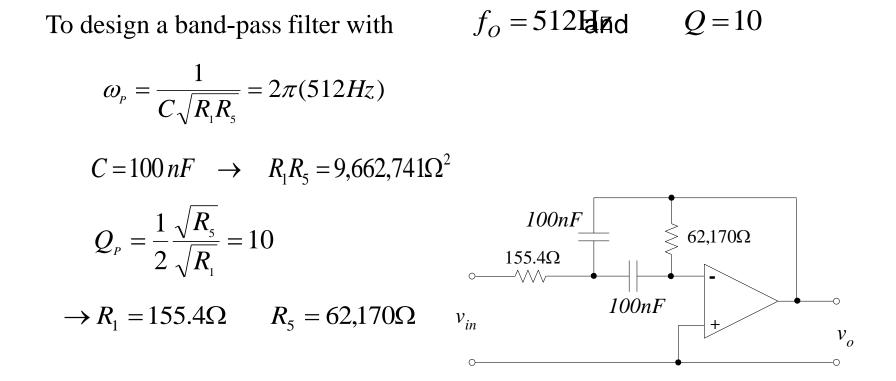
Comparing with the band-pass response

$$H(s) = K \frac{s}{s^2 + \frac{\omega_p}{Q_p}s + \omega_p^2}$$

It gives,

$$\omega_p = \frac{1}{C\sqrt{R_1R_5}} \quad Q_p = \frac{1}{2}\sqrt{\frac{R_5}{R_1}} \quad H(\omega_p) = -2Q^2$$

Example: IGMF Band Pass Filter



With similar analysis, we can choose the following values:

$$C = 10 \, nF$$
 $R_1 = 1,554 \, \Omega$ and $R_5 = 621,700 \, \Omega$

Butterworth Response (Maximally Flat)

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_o}\right)^{2n}}}$$

where n is the order

Normalize to
$$\omega_{o} = 1 \text{ rad/s}$$

 $\left| \hat{H}(j\omega) \right| = \frac{1}{\sqrt{1 + \omega^{2n}}}$

Butterworth polynomials:

$$\left| \hat{H}(j\omega) \right| = \frac{1}{\left| B_n(j\omega) \right|}$$

Butterworth polynomials

$$B_{1}(s) = s + 1$$

$$B_{2}(s) = s^{2} + \sqrt{2}s + 1$$

$$B_{3}(s) = s^{3} + 2s^{2} + 2s + 1$$

$$= (s+1)(s^{2} + s + 1)$$

$$B_{4}(s) = s^{4} + 2.61s^{3} + 3.41s^{2} + 2.61s + 1$$

$$= (s^{2} + 0.77s + 1)(s^{2} + 1.85s + 1)$$

$$B_{5}(s) = s^{5} + 3.24s^{4} + 5.24s^{3} + 5.24s^{2} + 3.24s + 1$$

$$= (s+1)(s^{2} + 0.62s + 1)(s^{2} + 1.62s + 1)$$

Second order Butterworth Filter

