Characteristics of an Ideal Op-Amp

- Infinite input impedance
- Zero output impedance
- Zero common-mode gain, or, infinite common-mode rejection
- Infinite open-loop gain *A*
- Infinite bandwidth.

Difference Amplifier

• A difference amplifier is one that responds to the difference between the two signals applied at its input and ideally rejects signals that are common to the two inputs.

More Characteristics of Op-Amp

- Since the ideal op-amp responds only to the difference between the two input signals, the ideal op-amp maintains a zero output signal when the two input signals are equal.
- When the two input signals are unequal, there is what is called a common-mode input signal.
- For the ideal op-amp, the common-mode output signal is zero. This characteristic is referred to as common-mode rejection.
- Another characteristic, because op-amp is biased by both positive and negative power supplies, most op-amps are direct coupled devices (no coupling capacitors are required on the input). Accordingly, the two input voltages can be DC.
- Because the OP is composed of transistors biased in the active region by the DC power supply, the output voltage is limited.

Difference Amplifier

A Single Difference or Differential Amplifier

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instrumentation Amplifier

Input (a) and output (b) stages of Instrumentation amplifier

 $A_{V} = \frac{v_{out}}{v_{1} - v_{2}} = \frac{R_{F}}{R} \left(1 + \frac{2R_{2}}{R_{1}} \right)$

6

(b)

Design Example: Determine the range required for resistor R_1 in the instrumentation amplifier to realize a differential gain adjustable from 5 to 500. Assume $R_F = 2R$, so that the difference amplifier gain is 2.

• Assume R_1 is a combination of a fixed resistor R_{1f} and a variable resistor R_{1v} . Assume $R_{1v} = 100 \text{ k}\Omega$

$$A_{V} = \frac{v_{out}}{v_{1} - v_{2}} = \frac{R_{F}}{R} \left(1 + \frac{2R_{2}}{R_{1}} \right)$$

$$500 = 2 \left(1 + \frac{2R_{2}}{R_{1f}} \right) \text{ and the minimum differential gain is}$$

$$R_{1v}$$

$$5 = 2 \left(1 + \frac{2R_{2}}{R_{1f} + 100} \right) \text{ and from the maximum gain expression}$$

$$2R_{2} = 249R_{1f}$$

$$1.5 = \frac{2R_{2}}{R_{1f} + 100} = \frac{249R_{1f}}{R_{1f} + 100}$$

$$R_{1f} = 0.606 \text{ k}\Omega \text{ and } R_{2} = 75.5 \text{ k}\Omega$$

Op-amp Differentiator

Large Signal Operation of Op Amp

- Like other amplifiers, op amps operate linearly over a limited range of output voltages.
- Another limitation of the operation of op amps is that their output current is limited to a specified maximum. For example, the op amp 741 is specified to have a maximum output current of ± 20 mA.
- Read Example 2.5.
- Another phenomenon that can cause nonlinear distortion when large output signals are present is that of slew-rate limiting. This means there is a specific maximum rate of change possible at the output of a real op amp. This maximum is known as the slew rate (SR) of the op amp and is defined as

$$SR = \frac{dv_O}{dt} \bigg|_{max}$$

Design Example. Design a difference amplifier with a specified gain and minimum differential input resistance. Design the circuit such that the differential gain is 30 and the minimum differential input resistance is $R_i = 50 \text{ k}\Omega$

$$R_i = 2R_1 = 50 \text{ k}\Omega$$

 $R_1 = R_3 = 25 \text{ k}\Omega$
Since the differential gain is $\frac{R_2}{R_1} = 30$,
we must have $R_2 = R_4 = 750 \text{ k}\Omega$

Design Example: Calculate the common-mode rejection ratio of a differential amplifier. Consider the difference amplifier shown in page 2.

Let $R_2/R_1 = 10$ and $R_4/R_3 = 11$. Determine CMRR (dB)

vo = vo1 + vo2

$$\begin{aligned} v_{o} &= (1 + \frac{R_{2}}{R_{1}}) \left(\frac{\frac{R_{4}}{R_{3}}}{1 + \frac{R_{4}}{R_{3}}} \right) v_{I2} - (\frac{R_{2}}{R_{1}}) v_{I1} \\ v_{o} &= (1 + 10)(\frac{11}{1 + 11}) v_{I2} - (10) v_{I1} = 10.0833 v_{I2} - 10 v_{I1} \\ v_{d} &= v_{I2} - v_{I1}; v_{cm} = \frac{v_{I1} + v_{I2}}{2}; v_{I1} = v_{cm} - \frac{v_{d}}{2}; v_{2} = v_{cm} + \frac{v_{d}}{2} \\ v_{o} &= 10.0833 (v_{cm} + \frac{v_{d}}{2}) - 10 (v_{cm} - \frac{v_{d}}{2}) \\ v_{o} &= 10.042 v_{d} + 0.0833 v_{cm}; v_{o} = A_{d} v_{d} + A_{cm} v_{cm} \\ A_{d} &= 10.042; A_{cm} = 0.0833 \\ \text{CMRR(dB)} &= 20 \log_{10} \left(\frac{10.042}{0.0833} \right) = 41.6 \text{ dB} \end{aligned}$$

Op-amp Circuits Employing Complex Impedances

 $rac{V_{out}}{V_S}(j\omega)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Active Low-Pass Filter

Normalized Response of Active Low-pass Filter

Active High-Pass Filter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Normalized Response of Active High-pass Filter

Active Band-Pass Filter

Normalized Amplitude Response of Active Band-pass Filter

Op-amp Integrator

Op-amp Differentiator

