ELG4152: Problems from Chapter 11

Problem 1: Consider the system represented in state variable form

$$
\begin{aligned}
& \mathbf{x}=\mathbf{A x}+\mathbf{B} u \\
& y=\mathbf{C} \mathbf{x}+\mathbf{D} u
\end{aligned}
$$

Where

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rr}
1 & 4 \\
-5 & 10
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{ll}
1 & -4
\end{array}\right] \quad \mathbf{D}=[0]
\end{aligned}
$$

Verify that the system is observable. If so, design a full-state observer by placing the observer poles at $s_{1,2}=-1$.

Solution:

The observability matrix is

$$
\mathbf{P}_{o}=\left[\begin{array}{l}
\mathbf{C} \\
\mathbf{C A}
\end{array}\right]=\left[\begin{array}{lc}
1 & -4 \\
21 & -36
\end{array}\right]=48
$$

The system is observable.
The desired poles of the observer are $s_{1,2}=-1$. So the desired characteristic equation is

$$
s^{2}+2 s+1
$$

The actual characteristic equation is

$$
\begin{aligned}
& \text { Det }[s \mathbf{I}-(\mathbf{A}-\mathbf{L C})]=\operatorname{Det}\left[\begin{array}{ll}
s-1+L_{1} & -4-4 L_{1} \\
5+L_{2} & \mathrm{~s}-10-4 L_{2}
\end{array}\right] \\
& =s^{2}+\left(L_{1}-4 L_{2}-11\right) s+10 L_{1}+8 L_{2}+30=0
\end{aligned}
$$

Comparing the actual equation with the desired equation yields

$$
\mathbf{L}=\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right]=\left[\begin{array}{l}
-0.25 \\
-3.3125
\end{array}\right]
$$

Problem 2: Consider the third order system

$\dot{\mathbf{x}}$	$=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right] x+\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right] u$
y	$=\left[\begin{array}{lll}2 & -4 & 0\end{array}\right] x+[0]$

Verify that the system is observable. If so, determine the observer gain matrix required to place the observer poles at $s_{1,2}=-1 \pm 2 j$ and $\mathrm{s}_{3}=-10$.

Answer:

$$
\mathbf{L}=\left[\begin{array}{l}
5.45 \\
0.48 \\
1.24
\end{array}\right]
$$

Problem 3: Consider the second order system

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathrm{x}+[0] u
\end{aligned}
$$

Determine the observer gain matrix required to place the observer poles at $s_{1,2}=-1 \pm 1 j$

