Chapter 13: Design of a digital controller
Method 1: a. design the controller Gc(s) in s domain;
b. convert the $\mathrm{Gc}(\mathrm{s})$ to z domain $\mathrm{D}(\mathrm{z})$.

Method 2: a. convert the given s domain plant $G(s)$ into z domain;
b. design the digital controller in z domain directly.

This week we explain the first method.

Step b: convert s domain $\mathbf{G c}(\mathrm{s})$ to z domain $\mathrm{D}(\mathrm{z})$:

Section 13.11, if $G c(s)=k_{1}+\frac{k_{2}}{s}+k_{3} s=\frac{X(s)}{U(s)}$, then
$U(s)=\left(k_{1}+\frac{k_{2}}{s}+k_{3} s\right) X(s)$,
if $U(\mathrm{~s})=\mathrm{X}(\mathrm{s}), \mathrm{U}(\mathrm{z})=\mathrm{X}(\mathrm{z})$;
if $U(s)=\frac{1}{s} X(s)$, then $u(t)=\int_{0}^{t} x(\tau) d \tau, \quad \longrightarrow$
in discrete notation, $u(k)=u(k T)=u((k-1) T)+T x(k T) \longrightarrow U(z)=z^{-1} U(z)+T X(z)$
i.e. $U(z)=\frac{T}{1-z^{-1}} X(z)$
if $U(s)=s X(s)$, then $u(t)=\frac{d x(t)}{d(t)}$, in discrete notation, $u(k T)=\frac{x(k T)-x((k-1) T)}{T}$,
$\longrightarrow U(z)=\frac{X(z)-z^{-1} X(z)}{T}=\frac{1-z^{-1}}{T} X(z)$
so, $D(z)=Z(G c(s))=\left(k 1+k 2 \frac{T z}{z-1}+k 3 \frac{z-1}{T z} X(s)\right.$
section 13.8: if $G c(s)=k \frac{s+a}{s+b}$, corresponding $D(z)=C \frac{z-A}{z-B}$, with
$A=e^{-a T}, B=e^{-b T}, C=k \frac{a}{b} \frac{1-B}{1-A}$

Step a: design the controller Gc(s) in s domain

Gc(s) can be designed using the method explained in Chapter 10,11, and 12.
Review the design of a phase lead controller in Chapter 10 and explain the example 13.5 in details.

1. review the concept of phase margin (Chapter 7):

Definition: The phase margin is the amount of phase shift of the GH(jw) at unity magnitude that will result in a marginally stable system with intersection of the $-1+j 0$ point on the Nyquist diagram.

It means phase margin is the phase shift needed to 180 or -180 at the frequency where the magnitude of $\mathrm{GH}(\mathrm{jw})$ is one, i.e. 0 dB , or it is 180 or -180 minus the phase 180 at the frequency where the magnitude of $\mathrm{GH}(\mathrm{jw})$ is 0 dB . Using the Bode plot to explain the phase margin is shown in the following figure.

For example: $G H(s)=\frac{1740}{s(0.25 s+1)}$

$\mathrm{pm}=2.7466=(-177.3)-180 . \quad$ usually, we define phase margin within (-180 180).
the preferred closed-loop phase margin is greater than 45 , we need phase compensation about at lest $45-2=43$.

Another example from section 9.4
$G H(s)=\frac{1}{s(s+1)(0.2 s+1)}=\frac{1}{0.2 s^{3}+1.2 s^{2}+s}$

2. review the phase-lead design using phase margin (Section 10.3 and 10.4):
$G c(s)=k \frac{s-a}{s-b}$, i.e., $G c(j \omega)=k \frac{j \omega+z}{j \omega+p}=k \frac{z}{p} \frac{j \frac{\omega}{z}+1}{j \frac{\omega}{p}+1}=k \frac{1}{\alpha} \frac{1+j \omega \alpha \tau}{1+j \omega \tau}$, where
$a=\frac{p}{z}, \tau=\frac{1}{p}$.
The magnitude is $|G c(j \omega)|=\frac{k}{a} \sqrt{\frac{1+(\omega \alpha \tau)^{2}}{1+(\omega \tau)^{2}}}$,

The phase is $\angle G c(j \omega)=\tan ^{-1}(\omega \alpha \tau)-\tan ^{-1}(\omega \tau)$
Or we can write the phase in another formular,
$G c(j \omega)=k \frac{1}{\alpha} \frac{1+j \omega \alpha \tau}{1+j \omega \tau}=\frac{k}{\alpha} \frac{(1+j \omega \alpha \tau)(1-j \omega \tau)}{1-(\omega \tau)^{2}}=\frac{k}{a} \frac{1+\omega^{2} \alpha \tau^{2}+j(\omega \alpha \tau-\omega \tau)}{1-(\omega \tau)^{2}}$

The phase is $\angle G c(j \omega)=\tan ^{-1} \frac{\omega \alpha \tau-\omega \tau}{1+\omega^{2} \alpha \tau^{2}}$
The bode diagram of the general phase-lead compensator is shown in textbook figure 10.3, or reference to the figure in the last page of this notes. The maximum value of the phase lead occurs at a frequency ω_{m}, and $\omega_{m}=\sqrt{z p}=\frac{1}{\tau \sqrt{\alpha}}$.

It should also be noted that at ω_{m}, the Gc(s) add additional gain about

$$
20 \log _{10} \alpha / 2=10 \log _{10} \alpha
$$

At frequency ω_{m}, the corresponding maximum phase is
$\Phi_{m}=\left.\angle G c(j \omega)\right|_{\omega=\omega_{m}}=\tan ^{-1} \frac{\omega \alpha \tau-\omega \tau}{1+\omega^{2} \alpha \tau^{2}}=\frac{\alpha-1}{2 \sqrt{\alpha}}$, or it is equivalent to $\sin \Phi m=\frac{\alpha-1}{\alpha+1}$ (Eq 4).
So if we can derive the requested phase compensation Φ_{m}, then the can be calculated from
(Eq 4).
Design step is expressed in Section 10.4:

1. plot the Bode diagram of the uncompensated $\mathrm{G}(\mathrm{s})$, find the phase margin of $\mathrm{G}(\mathrm{s})$;
2. calculate the maximum phase lead Φ_{m},
3. using Eq 4calculated α;
4. calculate $10 \log _{10} \alpha$ and determine the frequency where the uncompensated magnitude curve is equal to $-10 \log _{10} \alpha$. Because the compensation network provide a gain of $10 \log _{10} \alpha$ at ω_{m}. This frequency is the new 0 dB crossover frequency and ω_{m} simultaneously.
5. using ω_{m} and α to calculate z and p using $a=\frac{p}{z}, \tau=\frac{1}{p} . \omega_{m}=\sqrt{z p}$, i.e. $p=\omega_{m} \sqrt{\alpha}$ and $z=p / a$.
6. k is calculated to yield $|G c G|=1$

Example 13.5: $G H(s)=\frac{1740}{s(0.25 s+1)}$
As shown previously, the phase margin of the uncompensated system is 2.7 , to achieve the closed-loop phase margin greater than 45 , we need additional phase lead $\Phi_{m}>45-2.7$;

the preferred closed-loop phase margin is greater than 45 , we need phase compensation about at lest 45-2 $=43$. But considering that $G c(s)=\frac{s-a}{s-b}$ adds additional gain about $10 \log _{10} \alpha$ to the system, to be safely, we need larger Φ_{m} as illustrated in above figure. So we chose $=46$. $\alpha=\frac{1+\sin \Phi_{m}}{1-\sin \Phi_{m}}=6.25$. At the end, we need verify the performance, if it does not achieve required performance, we need to pick a larger Φ_{m}
$10 \log _{10} \alpha=7.9588 \mathrm{~dB}$
$|G p(j \omega)|=\frac{1740}{\sqrt{\left(0.25 \omega^{2}\right)^{2}+\omega^{w}}}=10^{-8 / 20}=0.4$, then we get $\omega=125$
so $\mathrm{z}=50, \mathrm{p}=312$.
$G c(s)=k \frac{s+50}{s+312}$,
$G c G p(s)=k \frac{s+50}{s+312} \frac{1740}{s(0.25 s+1)}$,
magnitude is $\left|k \frac{j \omega+50}{j \omega+312} \frac{1740}{\left(-0.25 \omega^{2}+j \omega\right)}\right|=k \frac{\sqrt{\omega^{2}+2500}}{\sqrt{\omega^{2}+312^{2}}} \frac{1740}{\sqrt{\left(0.25 \omega^{2}\right)^{2}+\omega^{2}}}=1$
i.e. $k \frac{\sqrt{\omega^{2}+2500}}{\sqrt{\omega^{2}+312^{2}}} 0.4=1, k=\frac{1}{2.5 \bullet 0.44}=5.67$

