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Chapter 11

Compensator Design

When the full state is not available for feedback, we 
utilize an observer. The observer design process is 

described and the applicability of Ackermann’s formula 
is established. The state variable compensator is 

obtained by connecting the full-state feedback law to the 
observer.

We consider optimal control system design and then 
describe the use of internal model design to achieve 
prescribed steady-state response to selected input 

commands.
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State Variable Compensator Employing Full-State 
Feedback in Series with a Full State Observer
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Compensator Design
Integrated Full-State Feedback and Observer
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The goal is to verify that, with the value of u(t) we retain the 
stability of the closed-loop system and the observer. The 

characteristic equation associated with the previous 
equation is
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The Performance of Feedback Control Systems

• Because control systems are dynamics, their performance is usually 
specified in terms of both the transient response which is the 
response that disappears with time and the steady-state response  
which exists a long time following any input signal initiation.

• Any physical system inherently suffers steady-state error in 
response to certain types of inputs. A system may have no steady-
state error to a step input, but the same system may exhibit nonzero 
steady-state error to a ramp input. 

• Whether a given system will exhibit steady-state error for a given 
type of input depends on the type of open-loop transfer function of 
the system.
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The System Performance
• Modern control theory assumes that the systems engineer can 

specify quantitatively the required system performance. Then the
performance index can be calculated or measured and used to 
evaluate the system’s performance. A quantitative measure of the 
performance of a system is necessary for the operation of modern
adaptive control systems and the design of optimum systems.

• Whether the aim is to improve the design of a system or to design a 
control system, a performance index must be chosen and 
measured.

• A performance index is a quantitative measure of the performance
of a system and is chosen so that emphasis is given to the important 
system specifications.
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Optimal Control Systems

• A system is considered an optimum control system when the system
parameters are adjusted so that the index reaches an extreme value, 
commonly a minimum value. 

• A performance index, to be useful, must be a number that is always 
positive or zero. Then the best system is defined as the system that 
minimizes this index. 

• A suitable performance index is the integral of the square of the error, 
ISE. The time T is chosen so that the integral approaches a steady-
state value.  You may choose T as the settling time Ts

∫=
T

dtte
0

2 )(   ISE
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The Performance of a Control System in Terms of State Variables

• The performance of a control system may be represented by integral 
performance measures [Section 5.9]. The design of a system must be based on 
minimizing a performance index such as the integral of the squared error (ISE). 
Systems that are adjusted to provide a minimum performance index are called 
optimal control systems.

• The performance of a control system, written in terms of the state variables of a 
system, can be expressed in general as

• Where x equals the state vector, u equals the control vector, and tf equals the 
final time.

• We are interested in minimizing the error of the system; therefore when the 
desired state vector is represented as xd = 0, we are able to consider the error 
as identically equal to the value of the state vector. That is, we desire the 
system to be at equilibrium, x = xd= 0, and any deviation from equilibrium is 
considered an error.
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Design of Optimal Systems using State Variable Feedback and Error-Squared 
Performance Indices: Consider the following control system in terms of x and u
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Now Return to the Error-Squared Performance Index
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To minimize the performance index J, we consider two equations
The design steps are: first to determine the matrix P that satisfies the second 

equation when H is known. Second minimize J by determining the minimum of 
the first equation by adjusting one or more unspecified system parameters.
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State Variable Feedback: State Variables x1 and x2

u
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Compensated Control System
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Design Example: Automatic Test System
A automatic test system uses a DC motor to move a set of test probes as shown in 
Figure 11.23 in the textbook. The system uses a DC motor with an encoded disk to 

measure position and velocity. The parameters of the system are shown with K
representing the required power amplifier.
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State Variable Feedback
The goal is to select the gains so that the response to a step command

has a settling time (with a 2%criterion) of less than 2 seconds and
an overshoot of less than 4%
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To achieve an accurate output position, we let k1 = 1 and determine k, 
k2 and k3. The aim is to find the characteristic equation
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P11.3: An unstable robot system is described below by the vector differential 
equation. Design gain k so that the performance index is minimized.
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