Chapter 11
Compensator Design

When the full state is not available for feedback, we
utilize an observer. The observer design process is
described and the applicability of Ackermann’s formula
Is established. The state variable compensator is
obtained by connecting the full-state feedback law to the
observer.

We consider optimal control system design and then
describe the use of internal model design to achieve
prescribed steady-state response to selected input

commands.



State Variable Compensator Employing Full-State
Feedback in Series with a Full State Observer
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u(t) = —Kx(¢) Feedback Law
Employ state estimate X(¢) in the feedback control in place of x(¢)
Det(sI - (A —BK)) = 0 From full - state feedback. We need to verify

that when using the feedback control law we retain the stability

%=A%+Bu+ L(y — Cx) (From the observer, see the previos lecture)
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The goal is to verify that, with the value of u(t) we retain the
stability of the closed-loop system and the observer. The
characteristic equation associated with the previous
equation is

A(s) = Det(sI — (A — BK)) Det(sI - (A -LC))
So if the roots of both parts of the above equation (first related to
full - state feedback law and second to the design of the observer,
then the overall system is stable.
Design Procedure
1. Determine K such that Det(sI — (A —BK)) = 0 has roots
in the left half plane and place the roots properly to meet the design criteria.
2. Determine L such that Det(sI — (A —LC)) = 0 has roots
in the left half plane and place the roots to achieve observer performance.

3. Connect the observer to the full - state feedback law using u(7) = -Kx(7)
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The Performance of Feedback Control Systems

Because control systems are dynamics, their performance is usually
specified in terms of both the transient response which is the
response that disappears with time and the steady-state response
which exists a long time following any input signal initiation.

Any physical system inherently suffers steady-state error in
response to certain types of inputs. A system may have no steady-
state error to a step input, but the same system may exhibit nonzero
steady-state error to a ramp input.

Whether a given system will exhibit steady-state error for a given
type of input depends on the type of open-loop transfer function of
the system.



The System Performance

Modern control theory assumes that the systems engineer can
specify quantitatively the required system performance. Then the
performance index can be calculated or measured and used to
evaluate the system’s performance. A quantitative measure of the
performance of a system is necessary for the operation of modern
adaptive control systems and the design of optimum systems.

Whether the aim is to improve the design of a system or to design a
control system, a performance index must be chosen and
measured.

A performance index is a quantitative measure of the performance
of a system and is chosen so that emphasis is given to the important
system specifications.



A system is considered an optimum control system when the system
parameters are adjusted so that the index reaches an extreme value,

commonly a minimum value.

A performance index, to be useful, must be a number that is always

positive or zero. Then the best system is defined as the system that
minimizes this index.

A suitable performance index is the integral of the square of the error,
ISE. The time T is chosen so that the integral approaches a steady-
state value. You may choose T as the settling time T,

T
ISE = j e’ (1)dt
0



The Performance of a Control System in Terms of State Variables

The performance of a control system may be represented by integral
performance measures [Section 5.9]. The design of a system must be based on
minimizing a performance index such as the integral of the squared error (ISE).
Systems that are adjusted to provide a minimum performance index are called
optimal control systems.

The performance of a control system, written in terms of the state variables of a
system, can be expressed in general as

Ly

J = j o(x,u,1)dt
0

Where x equals the state vector, u equals the control vector, and f; equals the
final time.

We are interested in minimizing the error of the system; therefore when the
desired state vector is represented as x = 0, we are able to consider the error
as identically equal to the value of the state vector. That is, we desire the
system to be at equilibrium, x = x,= 0, and any deviation from equilibrium is
considered an error.



Design of Optimal Systems using State Variable Feedback and Error-Squared
Performance Indices: Consider the following control system in terms of x and u

Control signals State variables
u1 > > X1
Yz » Control > X2

System
u”l g > X3

The system can be represented by the vector differential equation : x = Ax+ Bu
Select a feedback controller so that u is some function of the measured state variable x and therefore
u=Kk(x) [u; =—kyx|; up =—krxy; u,, =k, x,, 1. We may choose the control vector as

U = —kl(xl +X2); Uy = —kz(Xz +X3);..

_ul T ] _X1 _
kl 1 .o kln
%) X2l . . . : .
= T Limit the feedbak function to a linear function so that u = Kx
_kml kmn ]
| Uy, | | Xp |

x = Ax - BKx = Hx; H is the n x n matrix resulting from the addition of the above elements.
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Now Return to the Error-Squared Performance Index

2
Iy

J = j[xl (t)] dt [Single state variable]
0

s

J = (x12 + x% )dt [ Two state variables]. Utilize the matrix operation

0

Performance index in terms of an integral of the sum of the state variables squared,

use matrix operation

x1x = [xl,xz,x3,...,xn]

Iy

X1

X2

XN

= (x12 + x% + x% +...+ x,% ); X1 is the transpose of the X matrix

T

J = j(xTx)dt;i(xTPx): xTx=x Px+x Px [A symmetric P will be used : pij = pji]

. dt
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To minimize the performance index J, we consider two equations
The design steps are: first to determine the matrix P that satisfies the second
equation when H is known. Second minimize J by determining the minimum of
the first equation by adjusting one or more unspecified system parameters.

T
di(xTPx): X Px+x Px-= (HX)T Px+x! (Hx)
4

= XT(HTP +PH)x = xx

J = Of d (x 'Px)dt = x | (0)Px(0)
0 dx

J = f X xdt=x" (0) Px(0) (Equationl)
0

H'P+PH=-1 (Equation?2)
The Design Criteria : Determine the matrix P (Equation 2) and minimize the

value of J by determining the minimum of Equation 1
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State Variable Feedback: State Variables x, and x,
X(0)/s x,(0)/s

1 1/s 1/s
R . .
. O AN AN -

dfx]_fo1T=] o], X2 X1
dx X2 00 %) 1

oofs 21
A= ; B=

00 1

Choose feedback control system so that u(#) = —kyx; — k> x5 ; sign negative to provide negative feedback

X1 =Xy x2 =—kix; —kyxy

. 0 1
In matrix form we have x=Hx = X.
-k -ky

Let k&; =1and find k5 so that the performance index is minimized
H'P+PH=-I

{0 -1“1911 plz}r[l?n Plz}[o 1}{—1 0}
L-ky|lpi2 Pa] P12 P2]l-1-ko] |0 -1
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—p12 — P12 =1
P11 —kypio —p2n =0
P12 —kopoo + p1o —kypap =-1
1 1 ks +2

P12 _59 P22 _gapll - 2k2

J=x! (0)Px(0) (The integral performance index)

x! (0) = [1 1] Assume each state is displaced one unit from equilibrium

pi1 P2 ||
J=|1 1]{ HJIPlﬁzszerz

P12 P22
2 2
J:k2 +2+1+ | :k2+2k2+4
2k, k 2k,
. Cnp2
9 = 2y 2y +2) 2(]2{2 t2k+4) ; ko =2 when J 1s minimum
di (2k,)
Jooo—xme|’ ! Det[M - H]| Det| ¥ T 242241
min -1 -2 1 A+1

14



1/s 1/s

This 1s a second order system. The characteristic equation is of the form

s+ 2Eans + a),% Accordingly £ =1.0 (optimum system)
The sensitivity of an optimal system 1s

A/ J oot AJIJ0.08/3

S =——"; Assumek = kp,S?" = = =0.107
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Compensated Control System

() x,(0)/s () x,(0)/s
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Design Example: Automatic Test System
A automatic test system uses a DC motor to move a set of test probes as shown in
Figure 11.23 in the textbook. The system uses a DC motor with an encoded disk to
measure position and velocity. The parameters of the system are shown with K
representing the required power amplifier.

K

G(s)= Section 2.5 —1 —
(s) S(Hb/J)(HRf/Lf)( ) b/J=LR; /L, =5
1 e
Amplifier '~ Field Motor o
u Z X3 Xy X
- > > > > 9
K
State variables /s
X, =6 x,=do0/dt; x3=1I
K K, + K 1
G(s) = H(s)=Ks| s? 4] —=——2 s+ —
s(s+1D(s+)5) K5 K5
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State Variable Feedback

The goal is to select the gains so that the response to a step command
has a settling time (with a 2%criterion) of less than 2 seconds and
an overshoot of less than 4%

u= [_kl —k2 —k3]x+r=—k1x1 —kz)Cz —k3X3 =7

Amplifier Field Motor
r+ X X
K > *3 > 2 > 1 » @
b 1/s
s+35 s+1
Ks

K,

K,
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khes (s* + as + b) 0

O == 6+ 9)

ks ks
If weseta =8and b =20 we will get zerosats =-4+ ;2

a

—k2+k3'b— 1

in order to pull the locus to the left in the s - plane.

k3 k3
ki =1;ky =0.35;k3 =0.05
When kk; =12;& =0.76;k = 240
Therootsare s =-10.62;5s =-3.69+ j3.00

8:k2+k3;202 1
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To achieve an accurate output position, we let k; = 1 and determine Kk,

k, and k5. The aim is to find the characteristic equation

0
x=Ax+Bu=|0
10

y=[10 0l
0
Xx=Ax+Bu=| 0
-k
s -1
Det| O s+1
-k ki~

1
-1
0

0 0
1 x+|0 |u
-5 |k
1 0 |
-1 1
-kky  -(5+k3k) |
0 _
-1
S+ (5+kszk)

X+

s° +65° + 55 + kyks” + kaks + ks + k = 0

20



1

L Kky(s®as+b)
s(s+1)(s+5) ks

Letky =1, a=8; b=20

We place zerosat s =—4+ ;2

k2 -|—k3 _g i ~ 90
k3 k3

kl — 1, kz = 035, k3 — 005, k =240
The roots at £ = 240

s =-10.62 and s =-3.69 £ j3.00
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P11.1:

X=x+u
u =—kx
X:x—kx:(l—k)x

x(t) = eU=H)1 x(0) System s stableif &£ ) 1.
Calculate the value of J assuming k ) 1 yields

J = jez(l_k)txz (0)dt = 1
g k

If £ =00, them J 1s minimum. Physically, this is not realizable

Select £ =31, then the value of the performance index J 1s1/30
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P11.3: An unstable robot system is described below by the vector differential
equation. Design gain k so that the performance index is minimized.

dix | |1 0]|x 1 : __ —_
4,2t

Then, with feedback applied, the systemis

. [(l—k) -k }
x=Hx= X
-(1+k) 2-k)

HTP+PH =-1

2p11(A=k)=2pp(k+1)=—1; p1o(3-2k)— p11k— pra(k+1)=0,=2kp15 +2prr (2 —k) =1
—(2k2—6k+7) 2k -2k 1 —(2k* — 6k +3)

P11 = » P12 = P =

CAAK2—8k+3) T AGKE—8k+3) T 4(4k2—8k+3)

. . 1
The performance index is computed to be: J = x| (0) Px(0) = P11 +2p12+ P = Py
When x(0) =1 I]T . As k goes to oo, J goes to 0. The system is unstable without feedback

1 - [-9 -10
Selectk=10,J =—;x = X = Ax
19 -11 -8

The closed - loop system roots are determined by Det [SI- A] = s2+175-38=0

where s; =-19and s, = 2; The system is unstable.
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