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Robust Control Systems (Chapter 12)
Feedback control systems are widely used in manufacturing, 

mining, automobile and other hardware applications. In 
response to increased demands for increased efficiency and 
reliability, these control systems are being required to deliver
more accurate and better overall performance in the face of 

difficult and changing operating conditions. 
In order to design control systems to meet the needs of 
improved performance and robustness when controlling 

complicated processes, control engineers will require new 
design tools and better control theory. A standard technique of 
improving the performance of a control system is to add extra 
sensors and actuators. This necessarily leads to a multi-input 

multi-output (MIMO) control system. Accordingly, it is a 
requirement for any modern feedback control system design 

methodology that it be able to handle the case of multiple 
actuators and sensors.

Robust means durable, hardy, and resilient
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Why Robust?
• When we design a control system, our ultimate goal is to control a 

particular system in a real environment. 

• When we design the control system we make numerous 
assumptions about the system and then we describe the system with 
some sort of mathematical model.

• Using a mathematical model permits us to make predictions about 
how the system will behave, and we can use any number of 
simulation tools and analytical techniques to make those predictions.

• Any model incorporates two important problems that are often 
encountered: a disturbance signal is added to the control input to 
the plant. That can account for wind gusts in airplanes, changes in 
ambient temperature in ovens, etc., and noise that is added to the 
sensor output.
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A robust control system exhibits the desired performance despite
the presence of significant plant (process) uncertainty

The goal of robust design is to retain assurance of system performance in spite 
of model inaccuracies and changes. A system is robust when it has acceptable 

changes in performance due to model changes or inaccuracies.
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Why Feedback Control Systems?

• Decrease in the sensitivity of the system to variation in 
the parameters of the process G(s).

• Ease of control and adjustment of the transient 
response of the system.

• Improvement in the rejection of the disturbance and 
noise signals within the system.

• Improvement in the reduction of the steady-state error
of the system
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Sensitivity of Control Systems to Parameter Variations

• A process, represented by G(s), whatever its nature, is subject to a changing 
environment, aging, ignorance of the exact values of the process parameters, 
and the natural factors that affect a control process.

• The sensitivity of a control system to parameter variations is very important. A 
main advantage of a closed-loop feedback system is its ability to reduce the 
system’s sensitivity.

• The system sensitivity is defined as the ratio of the percentage change in the 
system transfer function to the percentage change of the process transfer 
function.
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The sensitivity of the feedback system to changes in the 
feedback element H(s) is
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Robust Control Systems and System Sensitivity
A control system is robust when: it has low sensitivities, (2) it is stable 

over the range of parameter variations, and (3) the performance 
continues to meet the specifications in the presence of a set of changes 

in the system parameters.
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Let us examine the sensitivity of the following second-order system
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Example 12.1: Sensitivity of a Controlled System
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Bode Plot
Frequency response plots of linear systems are often displayed in the form of 
logarithmic plots, called Bode plots, where the horizontal axis represents the 

frequency on a logarithmic scale (base 10) and the vertical axis represents the 
amplitude ratio or phase of the frequency response function.
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Disturbance Signals in a Feedback Control System

• Another important effect of feedback in a control system is the control 
and partial elimination of the effect of disturbance signal.

• A disturbance signal is an unwanted input signal that affects the 
system output signal. Electronic amplifiers have inherent noise 
generated within the integrated circuits or transistors; radar systems 
are subjected to wind gusts; and many systems generate all kinds of 
unwanted signals due to nonlinear elements.

• Feedback systems have the beneficial aspects that the effect of 
distortion, noise, and unwanted disturbances can be effectively 
reduced.
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The Steady-State Error of a Unity Feedback Control System (5.7)

• One of the advantages of the feedback system is the reduction of the steady-
state error of the system.

• The steady-state error of the closed loop system is usually several orders of 
magnitude smaller than the error of the open-loop system.

• The system actuating signal, which is a measure of the system error, is denoted 
as Ea(s). 
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Compensator
• A feedback control system that provides an optimum performance 

without any necessary adjustments is rare. Usually it is important to 
compromise among the many conflicting and demanding 
specifications and to adjust the system parameters to provide 
suitable and acceptable performance when it is not possible to 
obtain all the desired specifications.

• The alteration or adjustments of a control system in order to provide 
a suitable performance is called compensation.

• A compensator is an additional component or circuit that is inserted 
into control system to compensate for a deficient performance.

• The transfer function of a compensator is designated as GC(s) and 
the compensator may be placed in a suitable location within the 
structure of the system.
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Root Locus Method

• The root locus is a powerful tool for designing and analyzing 
feedback control systems.

• It is possible to use root locus methods for design when two or three 
parameters vary. This provides us with the opportunity to design
feedback systems with two or three adjustable parameters. For 
example the PID controller has three adjustable parameters.

• The root locus is the path of the roots of the characteristic equation 
traced out in the s-plane as a system parameter is changed.

• Read Table 7.2 to understand steps of the root locus procedure.
• The design by the root locus method is based on reshaping the root 

locus of the system by adding poles and zeros to the system open
loop transfer function and forcing the root loci to pass through
desired closed-loop poles in the s-plane.
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The root Locus Procedure
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Example

( )( )32
1)(

++
=

ss
sG

Controller
GC(s)

Plant
G(s)

R(s) Y(s)

-
+

z1=-3+j1

-1-2

-z1

-z1

( )( )
( )( )( )112

11
ˆ

ˆ3
)()(1

)()(
)(

rsrsrs
zszsK

sGsG
sGsG

ST
C

C

+++
++

=
+

=

j1

j2



17

Analysis of Robustness
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The Design of Robust Control Systems
• The design of robust control systems is based on two tasks: 

determining the structure of the controller and adjusting the 
controller’s parameters to give an optimal system performance. This 
design process is done with complete knowledge of the plant. The
structure of the controller is chosen such that the system’s response 
can meet certain performance criteria.

• One possible objective in the design of a control system is that the 
controlled system’s output should exactly reproduce its input. That is 
the system’s transfer function should be unity. It means the system 
should be presentable on a Bode gain versus frequency diagram 
with a 0-dB gain of infinite bandwidth and zero phase shift. 
Practically, this is not possible!

• Setting the design of robust system requires us to find a proper
compensator, GC(s) such that the closed-loop sensitivity is less than 
some tolerance value.
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PID Controllers
PID stands for Proportional, Integral, Derivative. One form of controller 

widely used in industrial process is called a three term, or PID controller. 
This controller has a transfer function: 

A proportional controller (Kp) will have the effect of reducing the rise time 
and will reduce, but never eliminate, the steady state error. An integral 

control (KI) will have the effect of eliminating the steady-state error, but it 
may make the transient response worse. A derivative control (KD) will 
have the effect of increasing the stability of the system, reducing the 

overshoot, and improving the transient response. 
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Proportional-Integral-Derivative (PID) Controller
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Time- and s-domain block diagram of closed loop system
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PID and Operational Amplifiers
A large number of transfer functions may be implemented using 

operational amplifiers and passive elements in the input and feedback 
paths. Operational amplifiers are widely used in control systems to 

implement PID-type control algorithms needed.
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Figur
e 8.5
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Figure 
8.30

Op-amp Integrator
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Figure 8.35

Op-amp Differentiator
The operational differentiator performs the differentiation of the input signal. 

The current through the input capacitor is CS dvs(t)/dt. That is the output voltage 
is proportional to the derivative of the input voltage with respect to time, and

Vo(t) = _RFCS dvs(t)/dt
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Linear PID Controller
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Tips for Designing a PID Controller
When you are designing a PID controller for a given system, follow the 

following steps in order to obtain a desired response. 

• Obtain an open-loop response and determine what needs to be 
improved 

• Add a proportional control to improve the rise time
• Add a derivative control to improve the overshoot
• Add an integral control to eliminate the steady-state error
• Adjust each of Kp, KI, and KD until you obtain a desired overall 

response. 

• It is not necessary to implement all three controllers (proportional, 
derivative, and integral) into a single system, if not needed. For 
example, if a PI controller gives a good enough response, then you 
do not need to implement derivative controller to the system. 
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The popularity of PID controllers may be attributed partly to their robust 
performance in a wide range of operation conditions and partly to their 

functional simplicity, which allows engineers to operate them in a simple 
manner.
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Root Locus
Root locus begins at the poles and ends at the zeros.
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Design of Robust PID-Controlled Systems
The selection of the three coefficients of PID controllers is basically a search 

problem in a three-dimensional space. Points in the search space correspond to 
different selections of a PID controller’s three parameters. By choosing different 
points of the parameter space, we can produce different step responses for a 

step input.
The first design method uses the (integral of time multiplied by absolute error 

(ITAE) performance index in Section 5.9 and the optimum coefficients of Table 
5.6 for a step input or Table 5.7 for a ramp input. Hence we select the three PID 

coefficients to minimize the ITAE performance index, which produces an 
excellent transient response to a step (see Figure 5.30c). The design 

procedure consists of the following three steps.
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The Three Design Steps of Robust PID-Controlled System

• Step 1: Select the ωn of the closed-loop system by specifying the settling 
time.

• Step 2: Determine the three coefficients using the appropriate optimum 
equation (Table 5.6) and the ωn of step 1 to obtain GC(s).

• Step 3: Determine a prefilter GP(s) so that the closed-loop system transfer 
function, T(s), does not have any zero, as required by Eq. (5.47)
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Input Signals; Overshoot; Rise Time; Settling Time
• Step:       r(t) = A R(s) = A/s
• Ramp:     r(t) = At R(s) = A/s2

• The performance of a system is measured usually in terms of step response. 
The swiftness of the response is measured by the rise time, Tr, and the peak 
time, Tp.

• The settling time, Ts, is defined as the time required for the system to settle 
within a certain percentage of the input amplitude.

• For a second-order system with a closed-loop damping constant, we seek to 
determine the time, Ts, for which the response remains within 2% of the final 
value. This occurs approximately when
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Example 12.8: Robust Control of Temperature Using PID Controller employing 
ITAE performance for a step input and a settling time of less than 0.5 seconds.
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Cont. 12.8
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Results for Example 12.8
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E12.1: Using the ITAE performance method for step input, determine the required GC(t). 
Assume ωn = 20 for Table 5.6. Determine the step response with and without a prefilter 
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E12.3 A closed-loop unity feedback system has
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E12.5
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