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Mathematical Modeling of Systems 

 
 
 
In this chapter, we lead you through a study of mathematical models of 

physical systems. After completing the chapter, you should be able to 
 

 Describe a physical system in terms of differential equations. 
 Understand the way these equations are obtained. 
 Realize the use of physical laws governing a particular system such as 

Newton’s law for mechanical systems and Kirchhoff’s laws for electrical 
systems. 

 Realize that deriving mathematical models is the most important part of 
the entire analysis of control systems. 

 
 

Textbook 
 
Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Prentice 
Hall, 2001. 
 

 
2.1 INTRODUCTION 
 

Mathematical models may assume many different forms depending on the 
particular circumstances. For example, in optimal control problems, it is good to 
use state-space representations. On the other hand, for the transient-response or 
frequency-response analysis of single-input-single-output, linear, time-invariant 
systems, the transfer function representation may be more convenient than any 
other. Once a mathematical model of a system is obtained, various analytical and 
computational techniques may be used for analysis and synthesis purposes. 

Because the systems under consideration are dynamic in nature, the 
equations are usually differential equations. If these equations can be linearized, 
then the Laplace transform may be utilized to simplify the method of solution. 
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In summary, the approach to dynamic system problems may be listed as 
follows: 

• Define the system and its components. 
• Formulate the mathematical model and list the needed assumptions. 
• Write the differential equations describing the model. 
• Solve the equations for the desired output variables. 
• Examine the solutions and the assumptions. 
• If needed, reanalyze or redesign the system. 

 
2.2 DIFFRENTIAL EQUATIONS OF PHYSICAL SYSTEMS 
 

The differential equations describing the dynamic performance of a physical 
system are obtained by utilizing the physical laws of the process. Consider a 
torsional spring system with applied torque Ta(t). Assume the torsional spring  is 
massless. Suppose we want to measure the torque Ts(t) transmitted to the mass m. 
Since the spring is massless, the sum of the torques acting on the spring itself 
must be zero, or 
 

0)()( =− tTtT sa  
 

It is clear from the above equation that the torque Ta(t) applied at the end of 
the spring is transmitted through the spring. Such case is referred as through-
variable. Similarly the angular rate difference associated with the spring is 

 
)()()( ttt as ωωω −=  

 
Figure 1 Torsional spring mass system. 
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Therefore the angular rate difference is measured across the torsional spring 
and is referred to as an across-variable. 

This approach applies equally well to mechanical, electrical, fluid, and 
thermodynamic systems. Table 2-1 summarizes the variables for various physical 
systems. 
 
Table 2-1 Summary of Through- and Across-Variables for Physical Systems 

System Variable 1 Variable 2 Variable 3 Variable 4 
Electrical Current Charge Voltage Flux 

Translational Force Momentum Velocity Displacement 
Rotational Torque Angular 

Momentum 
Angular 
Velocity 

Angular 
Displacement 

Fluid Rate of Flow Volume Pressure  
Thermal Rate of Flow Heat energy Temperature  

 
Consider the simple spring-damper mechanical system shown in Figure 2. This 
system may be described by Newton’s second law of motion (this system may 
represent an automobile shock absorber). 
 
 

 
Figure 2 Spring-mass damper system with its free body diagram. 
 
Summing the forces acting on M and using Newton’s second law yields 
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2.3 LINEAR APPROXIMATION OF PHYSICAL SYSTEMS 
 

A system is called linear if the principle of superposition applies. The 
principle of superposition states that the response produced by the simultaneous 
application of two different forcing functions is the sum of the two individual 
responses. Therefore, for a linear system, the response to several inputs can be 
calculated by treating one input at a time and adding the results. 

Most of physical systems are linear with some range of the variables. 
However, all systems become nonlinear as the variables are increased without 
limit. A system is identified as linear in terms of the system excitation and 
response. In the case of electrical circuit, the excitation is the input current and 
the response is the voltage. In general, a condition of a linear system can be 
determined in terms of excitations xn(t) and responses yn(t). 
 

( ) ( ) ( ) ( ) ( ) ( )tytytytxtxtx nn +++=+++ .... 2121  
 

A system characterized by the relation y = x2 is not linear, because the 
superposition property is not satisfied. A system represented by the relation y = 
mx + b is not linear, because it does not satisfy the homogeneity property.  
 

A linear system satisfies the properties of superposition and homogeneity 
 
 
2.4 THE LAPLACE TRANSFORM 
 

The ability to obtain linear approximation of physical systems allows 
considering the use of the Laplace transformation. A transform is a change in 
the mathematical description of a physical variable to facilitate computation 
[Figure 3]. The ability to obtain linear approximation of physical systems allows 
considering the use of the Laplace transformation. The Laplace transform 
method substitutes easily solved algebraic equations for the more difficult 
differential equations. The time response solution is obtained by the following 
operations: 
 

• Obtain the differential equations 
• Obtain the Laplace transformation of the differential equations. 
• Solve the resulting algebraic transform of the variable of interest. 

 
The Laplace transform exists for linear differential equations for which the 

transformation integral converges. 
 

∫=
∞

−

0
)()( dtetfsF st  
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Here the complex frequency is s = σ + jω 
 
 

 
Figure 3 The transform method. 
 

The inverse Laplace transform is written as 
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The Laplace variable s can be considered to be the differential operator so that 
 

dt
ds =  

 
A table of important Laplace transform pairs is given in your textbook (Table 2.3) 
 
 
 
 
 
 
 
 
 
 

System described in 
the time domain by 

differential 
equation 

Circuit described in 
the frequency 

domain by algebraic 
equations 

Solution 
expressed in the 

time domain 

Transformation

Solution expressed 
in the frequency 

domain 
Transformation



Modern Control Systems                                                                                    6  

                                                                                     6

 
2.5 POLES AND ZEROS 
 

Consider the following function 
 

kbsMs
ybMs

sq
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+

== 2
0)(
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The denominator polynomial q(s), when equal to zero, is called the 

characteristic equation because the roots of this equation determine the 
character of the time response. The roots of this characteristic equation are also 
called the poles of the system. 

The roots of the numerator polynomial p(s) are called the zeros of the 
system. Poles and zeros are critical frequencies. At the poles, the function Y(s) 
becomes infinite, whereas at the zeros, the function becomes zero. The complex 
frequency s-plane plot of poles and zeros graphically portrays the character of the 
natural transient response of the system. For certain case 
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Figure 4 shows the poles and zeros of the above equation 

 
 
 
Figure 4 An s-plane pole and zero plot. 
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2.6 TRANSFER FUNCTION OF LINEAR SYSTEM 
 

The transfer function of a linear system is defined as the ratio of the 
Laplace transform of the output variable to the Laplace transform of the input 
variable, with all initial conditions assumed to be zero. The transfer function of a 
system represents the relationship describing the dynamics of the system under 
consideration. 
 
2.5.1 Transfer Function of an Operational Amplifier 

 
Consider the inverting amplifier shown in Figure 2-1. Under ideal 

conditions, i1 = 0, so that writing the node equation at v1 yields  
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Since v2 = v1, and v2 = 0, therefore, v1 = 0 
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Figure 5 An inverting amplifier operating with ideal conditions. 
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2.5.2 Transfer Function of a Separately-Excited DC Motor 
 

There are five major types of DC motors in general use: 
 

1. Separately-excited DC machines 
2. Shunt DC machines 
3. Series DC machines 
4. Compound-connected DC machines 
5. Permanent magnet DC machines 

 
In this section, we will consider the first type as a power actuator that delivers 

energy to a load. The equivalent circuit of a separately-excited DC machine is 
shown in Figure 6. The armature circuit is represented by an ideal voltage source 
representing induced voltage EA and a resistor RA. This representation is really the 
Thevenin equivalent of the entire rotor structure, including rotor coils and poles. 
The field voltage is represented by VF. The field coils, which produce the 
magnetic flux in the generator, are represented by inductor LF and resistor RF. 
The separate resistor Rr represents the variable resistor used to control the amount 
of current in the field circuit. Very often, RF and Rr are lumped together and 
called RF. 
 
 
 

 
 
Figure 6 Equivalent circuit of a separately excited DC motor. 
 
The output characteristics of a DC machine can be derived from the induced 
voltage and torque equations of the motor plus Kirchhoff’s voltage law (KVL). 
This can be states mathematically as 
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 aAAA RiEV    +=  ) 
 
The internal generated voltage (induced voltage) in the machine is given by  
 
 ωφ K  =AE   
 
where K is a constant on the construction of a particular DC machine (number of 
rotor coils, how they are interconnected, etc.). For a single rotating loop, K is 1/π.  
 
The Transfer Function 
 

• The transfer function of a DC motor will be developed for a linear 
approximation to an actual motor.  

• The second order effects, such as hysteresis and the voltage drop across 
the brushes, will be neglected.  

• The input voltage may be applied to the field or armature terminals. 
• The air-gap flux  Φ of the motor is proportional to the field current if, 

provided the field is unsaturated, so that 
 

ff iK=φ  

 
• The torque developed by the motor is assumed to be related linearly to 

the flux and the armature current as follows 
 

)()()( 11 titiKKtiKT affam == φ  
 

• It is evident from the above equation that, to have a linear element, one 
current must be maintained constant while the other current becomes the 
input current (variable) 

 
Field Current Controlled Motor 
 
Let us write the previous equation in Laplace transform notation 
 

)()()()( 1 sIKsIIKKsT fmfafm ==  

 
Where Km is the motor constant. The field current is related to the field current 

)()()( sIsLRsV ffff +=  

 
The motor torque Tm(s) is equal to the torque delivered to the load as  
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)()()( sTsTsT dLm +=  

 
Where TL(s) is the load torque and Td(s) is the disturbance torque, which is often 
negligible. The load torque for rotating inertia is given as 
 

)()()( 2 sbssJssTL θθ +=  
 
Rearranging equations 
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The transfer function of the field-controlled DC motor is 
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Figure 7 Block diagram model and signal flow graph of field-controlled DC 
motor. 
 
Complete for the armature-controlled DC motor. 
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Exercises 
 
E2.6 
A nonlinear device is represented by the function 

( ) 2/1xxfy ==  
 
Where the operating point for the input x is x0 = ½. Determine the linear 
approximation in the form of Eq. (2.9) of the textbook 
 
Solution: Given the linear approximation 

xky ∆=∆  
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E2.9 
A four-wheel antilock automobile braking system uses electronic feedback to 
control automatically the brake force on each wheel. A simplified flow graph of a 
brake control system is shown in the following figure, where Ff(s) and FR(s) are 
the braking force of the front and rear wheels, respectively, and R(s) is the desired 
automobile response on an icy road. Find Ff(s)/R(s) 
 
 
 

 
 
The transfer function is 
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E2.21 
The rotational velocity ω of the satellite shown in Figure E2.21 (textbook) is 
adjusted by changing the length of the beam L. The transfer function between 
ω(s) and the incremental change in beam length ∆L(s) is  
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The beam length change is ∆L(s) = 1/(4s). Determine the response of the velocity 
ω(s). 

 
 
 
Solution: The rotational velocity is 
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By applying partial fraction expansion, we get 
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Taking the inverse Laplace transform yields 

ttt eeet −−− −−+= 2734.01562.00234.025.0)( 5ω  
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Problems 
 
P2.7 
Obtain the transfer function of the differentiating circuit shown in Fig. P.2.7. 
 
Solution:  
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P2.13 
An electromechanical open-loop control system is shown in Figure P.2.13. The 
generator, driven at a constant speed, provides the field voltage for the motor. 
The motor has an inertial Jm and bearing friction bm. Obtain the transfer function 
θL(s) / Vf(s), and draw the block diagram of the system. The generator voltage, vg, 
can be assumed to be proportional to the field current, if. 
 
Solution: The motor torque is given by 
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Where 
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By combining the above relationships, we get 
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P2.49  
(a) The transfer function is 
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P2.50 
(a) The closed-loop transfer function is 
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(b) The poles of T(s) are s1 = -5 and s2,3=  -4 ± j35 
 
(c) The partial fraction expansion (with a step input) is 
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Design Problems 
 

DP2.3  
 
We have the output response 
 

tetty 22sin1)( −++=  
 
Taking the Laplace transform of the above equation 
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Take the Laplace transform of the ramp input yields 
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