MODERN CONTROL ENGINEERING LAB 3

January $28^{\text {th }} 2008$

FULL STATE FEEDBACK

Consider a SISO system in its ss representation:

$$
\begin{aligned}
& \underline{x}=A \underline{x}+B u \\
& y=C \underline{x}
\end{aligned}
$$

The system response - governed by $\lambda(A)$
We want to use K to change the position of these eigenvalues!

We assume $u=r-K x$ where r is some reference signal and the gain matrix $K \in \Re^{1 x n}$

If $r=0$ this controller is caller regulator.

We obtain:

$$
\begin{aligned}
& \underline{x}=A \underline{x}+B u=A \underline{x}+B(r-K \underline{x})=(A-B K) \underline{x}+B r=A_{C L} \underline{x}+B r \\
& y=C \underline{x}
\end{aligned}
$$

Objective: Pick K such that $A_{C L}$ has the desired eigenvalues!
Condition: States \boldsymbol{x} are accessible and the system is controllable.
This are the first steps that need to be checked before designing a full state controller.

Problem 1. Consider the following system:

$$
\begin{aligned}
& \underline{\dot{x}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \underline{x}+\binom{1}{0} u \\
& y=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \underline{x}
\end{aligned}
$$

a. Design a full state controller such that the closed loop system has the following poles: $p_{1}=-5, p_{2}=-6$
Solve first analytically and then with the use of MATLAB.
b. Redo the operations for the case in which the A matrix has changed to:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
$$

c. Check the tracking performances in the case of $r(t)=u(t)$ (unit step). Construct a SIMULINK diagram for our control system.

Do we have zero steady state error for the unit-step reference signal?

Conclusion: The output does not track our unit-step reference signal. How do we solve this problem??

One obvious solution is to scale the reference input $r(t)$ so that $u=\bar{N} r-K \underline{x}$, where \bar{N} is an extra-gain.

The open-loop system is:

$$
\begin{aligned}
& \underline{x}=A \underline{x}+B u \\
& y=C \underline{x}+D u
\end{aligned}
$$

For a unit-step input: $\quad r=r_{S S} u(t)$
At steady state: $\underline{x}=0 \Rightarrow \underline{x}=\underline{x}_{S S}, u=u_{S S}$. For good tracking we want:

$$
y=y_{S S}=r_{S S}
$$

Solve for:

$$
\binom{\underline{x}_{S S}}{u_{S S}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}\binom{\underline{0}}{r_{S S}}
$$

Let us define: $x_{S S}=N_{x} r_{S S}, u_{s S}=N_{u} r_{S s}$. Also:

$$
u=\bar{N} r-K \underline{x} \Rightarrow u_{S S}=\bar{N} r_{S S}-K \underline{x}_{S S} \Rightarrow \bar{N} r_{S S}=u_{S S}+K \underline{x}_{S S}
$$

Again,
$u=u_{S S}-K\left(\underline{x}-\underline{x}_{S S}\right)=N_{u} r_{S S}-K\left(x-N_{x} r_{S S}\right)=\left(N_{u}+K N_{x}\right) r_{S S}-K \underline{x}$
Such that:

$$
\bar{N}=N_{u}+K N_{x}
$$

Introduce this gain in the SIMULINK Model and check the tracking again!!

