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FULL STATE FEEDBACK

Consider a SISO system in its ss representation:

The system response – governed by 

We want to use        to change the position of these 
eigenvalues!

We assume                           where       is some 
reference signal and the gain matrix

If                this controller is caller regulator. 
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We obtain:

Objective: Pick        such that           has the desired eigenvalues!
Condition: States        are accessible and the system is controllable. 

This are the first steps that need to be checked before designing a 
full state controller.

Problem 1. Consider the following system:

a. Design a full state controller such that the closed loop system has 
the following poles: 
Solve first analytically and then with the use of MATLAB.
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b. Redo the operations for the case in which the        matrix has 
changed to: 

c. Check the tracking performances in the case of 

(unit step). Construct a SIMULINK diagram for our control system. 

Do we have zero steady state error for the unit-step reference signal?

Conclusion: The output does not track our unit-step reference signal. 
How do we solve this problem??
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One obvious solution is to scale the reference input            so that   
, where      is an extra-gain.

The open-loop system is:

For a unit-step input: 

At steady state:                                        . For good tracking we 
want:

Solve for:
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Let us define:                                    . Also: 

Again, 

Such that:

Introduce this gain in the SIMULINK Model and check the 
tracking again!!
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