ELG4157: Digital Control Systems



Advantages and Disadvantages

Improved sensitivity.
Use digital components.

Control algorithms easily
modified.

Many systems inherently
are digital.

* Develop complex math

algorithms.

Lose information during
conversions due to
technical problems.

Most signals continuous
In nature.



Digitization
The difference between the continuous and digital systems is that
the digital system operates on samples of the sensed plant rather

than the continuous signal and that the control provided by the
digital controller D(s) must be generated by algebraic equations.

In this regard, we will consider the action of the analog-to-digital
(A/D) converter on the signal. This device samples a physical signal,
mostly voltage, and convert it to binary number that usually consists
of 10 to 16 bits.

Conversion from the analog signal y(t) to the samples y(kt), occurs
repeatedly at instants of time T seconds apart.

A system having both discrete and continuous signals is called
sampled data system.

The sample rate required depends on the closed-loop bandwidth of
the system. Generally, sample rates should be about 20 times the
bandwidth or faster in order to assure that the digital controller will
match the performance of the continuous controller.
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Applications of Automatic Computer
Controlled Systems

Most control systems today use digital computers
(usually microprocessors) to implement the controllers).
Some applications are:

Machine Tools

Metal Working Processes

Chemical Processes

Aircraft Control

Automobile Traffic Control

Automobile Air-Fuel Ratio

Digital Control Improves Sensitivity to Signal Noise.



Digital Control System

Analog electronics can integrate and differentiate signals. In order
for a digital computer to accomplish these tasks, the differential
equations describing compensation must be approximated by
reducing them to algebraic equations involving addition, division,
and multiplication.

A digital computer may serve as a compensator or controller in a
feedback control system. Since the computer receives data only at
specific intervals, it is necessary to develop a method for describing
and analyzing the performance of computer control systems.

The computer system uses data sampled at prescribed intervals,
resulting in a series of signals. These time series, called sampled
data, can be transformed to the s-domain, and then to the z-domain
by the relation z = e%.

Assume that all numbers that enter or leave the computer has the
same fixed period T, called the sampling period.

A sampler is basically a switch that closes every T seconds for one
Instant of time.
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Modeling of Digital Computer

e*(t)

c(t)

Computer ) D/A 1 Process
Measure
Sampling analysis
Expression of the sampling signal
(1)) 5(t-KT)= ) x(kT)5(t-KkT)



Analog to Digital Conversion: Sampling

An input signal is converted from continuous-varying
physical value (e.g. pressure in air, or frequency or
wavelength of light), by some electro-mechanical device
Into a continuously varying electrical signal. This signal has
a range of amplitude, and a range of frequencies that can
present. This continuously varying electrical signal may
then be converted to a sequence of digital values, called
samples, by some analog to digital conversion circuit.

« There are two factors which determine the accuracy with which the
digital sequence of values captures the original continuous signal: the
maximum rate at which we sample, and the number of bits used in
each sample. This latter value is known as the quantization level
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Zero-Order Hold

The Zero-Order Hold block samples and holds its input
for the specified sample period.

The block accepts one input and generates one output,
both of which can be scalar or vector. If the input is a
vector, all elements of the vector are held for the same
sample period.

This device provides a mechanism for discretizing one or
more signals in time, or resampling the signal at a
different rate.

The sample rate of the Zero-Order Hold must be set to
that of the slower block. For slow-to-fast transitions, use
the unit delay block.
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The z-Transform

The z-Transform is used to take discrete time domain signals into a complex-
variable frequency domain. It plays a similar role to the one the Laplace
transform does in the continuous time domain. The z-transform opens up new
ways of solving problems and designing discrete domain applications. The z-
transform converts a discrete time domain signal, which is a sequence of real
numbers, into a complex frequency domain representation.

r*@t) = 3 r(kT) 5(t—kT)
k=0
Forasignal t) 0, Using the Laplace transforms, we have

Hr*(t)}= SrkT)e ™

k=0
7 — eST
Z{r()}=Z{r*)}= >r(kT)z™*
k=0
Z
=

Z{f ()} =F(z) = éof (kT)z™ 12


http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Real_number

Transfer Function of Open-Loop System

, Zero-order
r(t) T=1 r*(t) Hold G(s)

(1-e™). 1
G, (s) = G, (S) =
0 (%) s (%) s(s +1)
Y (s) 1—e ™
=G, (8)G,(s)=G(s) =
2x(g) - oG () =C() = 7
o . . &)1 1 1
Expanding into partial fraction : G(s) = (1—e — ——+—)
s s s+1
G(z) = 0.3678z + 0.2644

7% ~1.36782 +0.3678

Process ——
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Z-Transform

Z-transform method: Partial-fraction expansion approaches

If - X(s)= AGS) __ K n Ka et Ky
(s+ay)(s+a,)---(s+a,) S+a, S+a, S+a,
n
K,z
Then: X(z)= :
;Z_e—aﬁ

Example: 7 5(s +4) —ZE— 15 N 5 | 10z 15z N 5z
Pie: s(s+1)(s+2) S s+1 s+2| z-1 z-e 7 z-_e 7

Inverse Z-transform method: Partial-fraction expansion approaches

If . X(Z)Z ot o T = T + T
(z-e™ )(z-e2)---(s—e™™ ) z-e S—e

n
then: X (kT) = Ke
i=1

il
Example: x(kT)=27 il-e )ZT :Zl{ L ZZT}:l—eZkT
(z-1)(z-¢") -1 7-¢




Closed-Loop Feedback Sampled-Data Systems

) R@ E@ | @) Y
Y(2)
R(2) E(z) Y(2)

D(z) — G(2)

Y(2)
@:T(z _ G(2) _ G(z)D(z)
R(2) 1+G(z) 1+G(z)D(2) 16




Now Let us Continue with the Closed-Loop System for the
Same Problem

Y(z) G(z) 0.3678z+0.2644
R(z) 1+G(z) 2°-2+0.6322
Assumean a unit stepinput: R(z) = il

/ —

2(0.36782+0.2644)  0.36782% +0.26447

Y(2)=

(z-1)(z?-2+0.6322) 7°-27%+1.63227-0.6322
Y(z)=0.36782 +z % +1.42° +1.427* +1.1472
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Stability

The difference between the stability of the continuous
system and digital system is the effect of sampling rate
on the transient response.

Changes in sampling rate not only change the nature of
the response from overdamped to underdamped, but
also can turn the system to an unstable.

Stability of a digital system can be discussed from two
perspectives:

z-plane
s-plane

18



Stability Analysis in the z-Plane

A linear continuous feedback control system is stable if all poles of the
closed-loop transfer function T(s) lie in the left half of the s-plane.

In the left-hand s-plane, ¢ < 0; therefore, the related magnitude of z
varies between 0 and 1. Accordingly the imaginary axis of the s-plane
corresponds to the unit circle in the z-plane, and the inside of the unit

circle corresponds to the left half of the s-plane.

A sampled system is stable if all the poles of the closed-loop transfer
function T(z) lie within the unit circle of the z-plane.

7 — eST _ e(c7+ja))T
‘Z‘ _ eo"T
/7 =wl

19



The Stability Analysis

The graphic expression of the stability
condition for the sampling control systems

The stability criterion

Unstable zone

Critical stability '™ ,_hjane

/

@O

Stable zone

In the characteristic equation 1+GH(z)=0, substitute z with

s+1
7=——
s—-1

—— Bilinear transformation

We can analyze the stability of the sampling control systems the same as we did
in chapter 3 (Routh criterion in the s-plane) .

S=a+ =

Proof : suppose w=a+ j#,Z=Xx+ Jy,then:

z+1  x+jy+1 (x=1-jy)  x*+y*-1 _; 2y
z-1 x+jy-1{x=-1-jy ) (x=D%+y> ~(x=1)2+y?
a <0 =  xX*+y°-1<0=x°+y%<1

(for the left half of the s-plane) = (inside theunit circle of the z-plane)




The Stability Analysis

0.632Kz

1+G(z) =1+ -
2 -1.368z+0.368

0

Determine K for the stable system

s+1
Solution: Make y

o OO2KZ G 0632Ks+1.2645+ (2,736 —0.632K) =0

72 -1.3687 +0.368

0.632K 2.736 —0.632 K
In terms of the Routh criterion: 1.264
2.736 —0.632 K

We have: 0 < K<4.33



Example: Stability of a closed-loop system

r(t) Y ()
7 Go(s) [T Gyls) "

K G(2) = K(0.3678z +0.2644) _ K(az+hb)

s(s+1) 72 _136782+0.3678 z°—(1+a)z+a
The polesof thelosed - loop transfer function t(z) are the roots of the equation

Gp(s)=

[1+G(z)]:0:z2 —(1+a)z+a+Kaz+Kb=0

K=1 2%-7+06322=(z-05+ j0.6182)(z—0.5— j0.6182) =0
The systemis stable because the roots lie within the unit circle, When K =10

72 123102 +3.012= (z+1.115+ j1.295) (z +1.115— j1.295) (unstable)
This systemis stable for:0( K ( 2.39
Second -order samp led sy stemis unstable for increased gain where the continuougjs
stable for all values of gain.



Example

Find the stable range of the gain K for the unity feedback digital cruise control system of
Example 3.2 with the analog plant transfer function

>

G(s)=

s+3
and with digital-to-analog converter (DAC) and analog-to-digital converter (ADC) if the sam-
pling period is 0.02 s.

Solution
The transfer function for analog subsystem ADC and DAC is

(fzqs(?.’):(l-l’—l).?{.'.f_’ (;(S)jl}

S

sy z{e] K]

_s(s+3)

Using the partial fraction expansion

we obtain the transfer function

B T 1.9412x10°2 K
A »—0.9418
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For unity feedback, the closed-loop characteristic equation is
1+ Gays(z)=10
which can be simplified to
r—0.9418+1.9412x107 K=0
The stability conditions are
0.9418-1.9412x107% K <1
—09418+1.9412x107* K <1
Thus, the stable range of K is
-3 < K <100.05



The Steady State Error Analysis
ess = lim(z-1)E(2)

I e _~
ooy R@GE)  RE) "O—"—1G6)
E(z) =R(z)-c(z) =R(z) 1+6(2) _1+G(z) %
o - o - R(z2)
eSS_Ilel(z l)E(z)—Llinl(z 1)1+G(z)
1 Z
1+TK; r(t) =1(t) < R(z) = v K} = lim G(2)
RS rt)=t < R(2)= 1z —; Ky =1lim(z-1)G(2)
Tg (Z_]_) 71
_ 2
K] r(t) = t2 @R(z):T(szzl;l); K; = lim(z-1°G(2)



| @
\
ﬂ
O
T
G;
@
O

1) Determine K for the stable system.
2) If r(t) = 1+t, determine ey ="

Solution
1)
KTz 7
1-e ™ K (121)( / / 45 J
G(z)=Z - 1 _ A-5T
(2) = { S S(S+5):| (z-1)% z-1 z-e g
O K 22 -2.2067 2 +0.2135
:(1—9 )Z > I ——
| S°(s+5) 5 (z-1)(z-0.0067)

S+5

e 5.5, 5



2)

The charecteristic equation of the system:

2 —_
14+G(2) =1- K z7-2.20672+0.2135 0
5 (z-1)(z-0.0067)

(5-K)z? +(2.2067 K —5.0335)z +(0.0335 —0.2135K) = 0

=3 00932 w+ (9.993 —1.573 K)w+ (10.067 — 2.4202 K) = 0

s-1

O0<K <416

. K 22222067 2+0.2135
o =1lim G(z) =lim —- = o0
71 z->15  (z-1)(z-0.0067)
2 —
K” = lim (2 - DG(2) = lim - K 2°-220672+02135

751 z>1 5 (z—-0.0067)

*

K

0.2K

_|_
0.2K|;, K



Steady State Error and System Type

Steady-state errors in response to

Acceleration
System Step input Ramp input input
r(t) = 1 r(r) =t r(r) = 4¢°
Type 0 system " +1 K. S x
Type 1 system 0 R‘;— x*
Type 2 system 0 0 -l%’_




1) For unity feedback in figure below,

, 5+8
. ) rl8)= —
R(z) E(2) L(z) Yiz) 5+5
» (i) o DAC » Gils) s ADC >
tf- , 0.35%
Clz)=
r—1

a sampling period of 0.02 s,

(a) Find the z-transfer function for the analog subsystem with DAC and ADC.

(b) Find the closed-loop transfer function and characteristic equation.

(¢) Find the steadv-state error for a sampled unit step and a sampled unit
ramp. Comment on the effect of the controller on steady-state error.

2) Find the stable range of the gain K for the vehicle position control system
with the analog plant transfer function

_K
s(s+10)
and with DAC and ADC if the sampling period is 0.05 s.

Gls)=



Design of Digital Control Systems

The Procedure:

« Start with continuous system.
* Add sampled-data system elements.

 Chose sample period, usually small but not too small.
Use sampling period T = 1/ 10 fg, where f; = wg/ 27 and
wg 1S the bandwidth of the closed-loop system.

— Practical limit for sampling frequency: 20 < o, ,; vz >40
 Digitize control law.
« Check performance using discrete model or SIMULINK.
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Start with a Continuous Design
D(s) may be given as an existing design or by using root
locus or bode design.

E(2)

) _R@ .

D(z) — G@) |

Y(2)



Add Samples Necessary for Digital Control

« Transform D(s) to D(z): We will obtain a discrete system
with a similar behavior to the continuous one.

 Include D/A converter, usually a zero-order-device.
 Include A/D converter modeled as an ideal sampler.

« And an antialiasing filter, a low pass filter, unity gain filter
with a sharp cutoff frequency.

« Chose a sample frequency based on the closed-loop
bandwidth @y of the continuous system.

33



Closed-Loop System with Digital Computer Compensation

Y(2) _ T(2) = G(2)D(2)
R(z) 1+G(z)D(z)
The tranfer function of thecomputeris —= ( ) =D(z)
Consider the second order systemwith a zero- order hold and a plant
Gp(s) = whenT =1;G(z) = 0'3678(2 ” O'7189); If weselect D(z) = k(2-0.3678)
s(s+1) (z-1)z-0.3678) (z+1)

We cancer the poleof G(z)at z =0.3678 and have the two parametersr and K.

- 1.359(z-0.7189) ~0.5(z+0.7189)
bz)= (z 0240) ’G(Z)D(Z)_(z—l)(z+0.240)
s+a AT b7, ~L=A) a
Ge(s) =K —i D(2)= c:—Z :Z{G,(s)}=D(z);A=e?";B=c¢ C(l—B) K
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Compensation Networks (10.3; page 747)

The compensation network, G.(s) is cascaded with the unalterable process
G(s) in order to provide a suitable loop transfer function G_(s)G(s)H(s).

Compensation
RE) i Gus) [ G(s) —Y®
Aja)
H(s)
M
KTI(s+z)
_ =l o)
GC (S) ~ N O >
1_[1(8 + pl ) -p -Z
J:
G.(S) = K(s+2) (First —order comp ensator)

(s+p)
When z(p, the networkis called a phase- lead network



Closed-Loop System with Digital Computer Compensation
There are two methods of compensator design:
(1) G.(s)-to-D(z) conversion method, and
(2) Root locus z-plane method.

The G_(s)-to-D(z) Conversion Method

G.(s)=K >ra (First - Order Compensator)

S+Db
Z—A , . .
D(z)=C P (Digital Controller)
Z_

Z{G.(s)} = D(z) (z - transform)
1-A)

1-8)

A=e?T:B=ePT: C

:K%Whens:o
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The Frequency Response

The frequency response of a system is defined as the
steady-state response of the system to a sinusoidal input
signal.

The sinusoid is a unique input signal, and the resulting
output signal for a linear system, as well as signals
throughout the system, is sinusoidal in the steady-state; it
differs form the input waveform only in amplitude and
phase.

37



Phase-Lead Compensator Using Freguency Response

A first-order phase-lead compensator can be designed using the frequency
response. A lead compensator in frequency response form is given by

(1 " OL.T.S) p = E Z= i COm: \/Z_p Sln((l)m) = a-1

oc-(l + r-S) T ot o+ 1

GC(S) =

In frequency response design, the phase-lead compensator adds positive phase to

the system over the frequency range. A bode plot of a phase-lead compensator
looks like the following

...................................................................

Gain dB

17aT Vi
Frequency (radlisec)

Phase deg




Phase-Lead Compensator Using Freguency Response

Additional positive phase increases the phase margin and
thus increases the stability of the system. This type of
compensator is designed by determining alfa from the
amount of phase needed to satisfy the phase margin

requirements.

Another effect of the lead compensator can be seen in the
magnitude plot. The lead compensator increases the gain of
the system at high frequencies (the amount of this gain is
equal to alfa. This can increase the crossover frequency,
which will help to decrease the rise time and settling time of
the system.



Phase-Lag Compensator Using Root Locus

A first-order lag compensator can be designed using the root locus. A lag
compensator in root locus form is given by

(s + 2
(s +p)

where the magnitude of z is greater than the magnitude of p. A phase-lag
compensator tends to shift the root locus to the right, which is undesirable. For this
reason, the pole and zero of a lag compensator must be placed close together
(usually near the origin) so they do not appreciably change the transient response
or stability characteristics of the system.

G C(S) =

When a lag compensator is added to a system, the value of this intersection will be
a smaller negative number than it was before. The net number of zeros and poles
will be the same (one zero and one pole are added), but the added pole is a
smaller negative number than the added zero. Thus, the result of a lag
compensator is that the asymptotes' intersection is moved closer to the right half
plane, and the entire root locus will be shifted to the right.



Lag or Phase-Lag Compensator using Frequency Response

A first-order phase-lag compensator can be designed using the frequency
response. A lag compensator in frequency response form is given by

(1 + oc-'c-S)
oc-(l + ’C-S)

G C(S) =

The phase-lag compensator looks similar to a phase-lead compensator, except

that a is now less than 1. The main difference is that the lag compensator adds

negative phase to the system over the specified frequency range, while a lead

compensator adds positive phase over the specified frequency. A bode plot of a
phase-lag compensator looks like the following

Gain dB

T 1aT
Frequency (radizec)

Phase deg
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Example: Design to meet a Phase Margin Specification
Based on Chapter 10 (Dorf): Example 13.7

G,(s)= & We will attempt to design G, (s) so that we achieve

5(0.25s+1)

a phase margin of 45° with a crossover frequeny e, =125 rad/s (Fig10.10).
Using the Bode diagram of G, (s), we find that the phase margin is 2° (Eq10.24).
Based on 10.4, we find that the required pole - zero ratio is & = 6.25 (Eq 10.18).
K(s+50)
(s+312)

We select K in order to yield |GG, (jw)| =1

When o = @, =125rad/s. Then K =5.6.
Now the compensator G, (S) is to be realized by D(z).
Set T =0.001second. We have

1
w, =(ab)2 ;a=50; and b =312;G_(s) =

4.85(z —0.95)
(z-0.73)
If we select another value for the sampling period, the the coefficient of D(z) would differ!

A=e % =0.95B=e0"?-073andC =4.85;D(z) =

42



The Root Locus of Digital Control Systems

R(s)

Y(2) _

R(z) 1+KG(z2)D(z)

1+ KG(z)D(z) = 0 (Characteristic equation)

Zero Y(S)
D(2) > Order KG,(s) —
hold
KG(2)D(2) .

Plot theroot locus for the characteristic equation of thesampled systemas K varies.

1. Theroot locus startsat the polesand progresses to the zeros.

2. Theroot locus lies on a section of the real axis to the left of an odd number of polesand zeros.

3. Theroot locus is symmetrical with respect tothe horizontal real axis.

4. 1+KG(z)D(2)=0 or |KG(z)D(z)|=1land ZKG(z)D(z) =180° +k360°

43



d

Root Locus of a Second Order System
K increasing

<«

4 Im {z}

Unstable <«

Root locus

Unit circle
One zero -

Atz=-1 Re {2}
< > ' ) >
-3 -2 Bt 2 poles at
\ z=1
14 KG(2) =14 2+
(z-1)
Let z =0 and solve for K
12
K=- D" £
(o+1)
dF (o) =0;00,=-3,0, =1
do 44



Design of a Digital Controller

In order to achieve a specified responseutilizing a root locus method,

we will select a controller  D(z) =

Use (z-a) tocancel one poleat G(z)that lies on the positivereal axis
of thez-plane.
Select (z-b)sothat thelocus of thecompensated systemwill give
a set of complex roots
at a desired point within the unit circle on the z - plane.

45



Example: Design of a digital compensator

Let us design a compensator D(z)that will result in a stable system
when G, (s) Is as described in Example 13.8.

With D(z) =1, we have unstable system.Select D(z) = Z;Z
Z_
KG(2)D(2) = K(z +i)(z—a)
(z-1)°(z-b)
If weselecta=1andb=0.2,
k(z+1)

we have KG(z)D(z) =

(z-1)(z-0.2)
Using the equation for F (o), we obtain theentry pointas z = -2.56.
Theroot locus is on the unit circle at K =0.8.
Thus thesystemis stable for K{0.8.

46



If thesystemperformance were inadequate, we would improve
theroot locus by selecting a=1and b =-0.98so that
K(z+1) _ K
(z-1)(z+0.98)  (z-1)
Then theroot locus would lie on the real axis of the z - plane.

When K =1, theroot of the characteristicequation is at theorigin.

KG(z)D(z) =

a7



K increasing

K=0.8

- Unit circle

A

Entry point at
Z=-2.56

Root locus
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P13.10 Dorf

1

Gp(s)= . T=01D(z)=K
() s(s+10) (2)
(@) Thetransfer function G(z2)D(z) = K 20'0037”0-0026
2-—1.368z +0.3679
0.0037z +0.0026

2 =0
z°-1.368z+0.3679

(c) Using root locus method, maximum value of K is 239.
(d) Using Figure 13.19 for T/r =1and maximum overshoot of 0.3, we find K =75.
0.2759z +0.1982

z* —1.092z +0.5661
()  When K =119.5, thepolesare z=0.4641+ j0.6843. The overshoot is 0.55.

(b) Theclosed - loop systemcharacteristicequationis 1+ K

() WhenK=75; T(z)=

49



P13.11 Dorf

(8) G, ()= K 212
S+Db

By using Bode Plot, we may select a=0.7,b=0.1, and K =150.
The compensated systemovershoot and safety - statetracking error
(for a ramp input)are PO =30% and e, ( 0.01.

Z—A z—0.9324
(b) Use G, (s) to D(z) method (T =0.1): D(z) =C ——=155.3
z—B z—0.99
A—e T Boe.clTA_K2
1-B b

A=e%%0 -009324:B=e""-0.99:C =155.3

Z—A z—0.993
d) UseG.(s)to D(z) method (T =0.01):D(z) =C ——=150
(d) UseG,(s) to D(2) ( ):D(2)=C——— =150——

-aT . B— —bT . Cl A KE
1-B b

A=e%7-0993B=e"%"-0.999:C =150

A
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