
ELG4157: Digital Control Systems 

 

Discrete Equivalents 

Z-Transform 

Stability Criteria 

Steady State Error 

Design of Digital Control Systems 

 

 

 
1 



Advantages and Disadvantages 

• Improved sensitivity. 

• Use digital components. 

• Control algorithms easily 

modified. 

• Many systems inherently 

are digital. 

• Develop complex math 

algorithms. 

• Lose information during 

conversions due to 

technical problems. 

• Most signals continuous 

in nature. 

 



Digitization 

• The difference between the continuous and digital systems is that 

the digital system operates on samples of the sensed plant rather 

than the continuous signal and that the control provided by the 

digital controller D(s) must be generated by algebraic equations. 

• In this regard, we will consider the action of the analog-to-digital 

(A/D) converter on the signal. This device samples a physical signal, 

mostly voltage, and convert it to binary number that usually consists 

of 10 to 16 bits. 

• Conversion from the analog signal y(t) to the samples y(kt), occurs 

repeatedly at instants of time T seconds apart.  

• A system having both discrete and continuous signals is called 

sampled data system. 

• The sample rate required depends on the closed-loop bandwidth of 

the system. Generally, sample rates should be about 20 times the 

bandwidth or faster in order to assure that the digital controller will 

match the performance of the continuous controller. 
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Digital Control System 
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Continuous Controller and Digital Control 
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Applications of Automatic Computer 

Controlled Systems 

• Most control systems today use digital computers 

(usually microprocessors) to implement the controllers). 

Some applications are: 

• Machine Tools 

• Metal Working Processes 

• Chemical Processes 

• Aircraft Control 

• Automobile Traffic Control 

• Automobile Air-Fuel Ratio 

• Digital Control Improves Sensitivity to Signal Noise.  
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Digital Control System 
• Analog electronics can integrate and differentiate signals. In order 

for a digital computer to accomplish these tasks, the differential 

equations describing compensation must be approximated by 

reducing them to algebraic equations involving addition, division, 

and multiplication. 

• A digital computer may serve as a compensator or controller in a 

feedback control system. Since the computer receives data only at 

specific intervals, it is necessary to develop a method for describing 

and analyzing the performance of computer control systems. 

• The computer system uses data sampled at prescribed intervals, 

resulting in a series of signals. These time series, called sampled 

data, can be transformed to the s-domain, and  then to the z-domain 

by the relation z = ezt. 

• Assume that all numbers that enter or leave the computer has the 

same fixed period T, called the sampling period. 

• A sampler is basically a switch that closes every T seconds for one 

instant of time. 



8 

r(t) r*(t) 

Continuous Sampled 

Sampler 

r(T) 

r(2T) 

r(3T) 

r(kT) 

r(4T) 

0 T 2T 3T 

T 2T 3T 

4T 

4T 

Zero-order 

Hold 

Go(s) 

P(t) 

 
s

e
e

ss
sG

sT
sT


 


111

)(0



  D/A A/D Computer Process 

Measure 

r(t) c(t) e(t) 

－ 

e*(t) u*(t) u(t) 

  Sampling analysis 

  Expression of the sampling signal 

Modeling of Digital Computer 

)()()()()()()(*

00

kTtkTxkTttxttxtx

kk

T  












10 

 

Analog to Digital Conversion: Sampling 

 
An input signal is converted from continuous-varying 

physical value (e.g. pressure in air, or frequency or 

wavelength of light), by some electro-mechanical device 

into a continuously varying electrical signal. This signal has 

a range of amplitude, and a range of frequencies that can 

present. This continuously varying electrical signal may 

then be converted to a sequence of digital values, called 

samples, by some analog to digital conversion circuit.  

• There are two factors which determine the accuracy with which the 

digital sequence of values captures the original continuous signal: the 

maximum rate at which we sample, and the number of bits used in 

each sample. This latter value is known as the quantization level 
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Zero-Order Hold 

• The Zero-Order Hold block samples and holds its input 
for the specified sample period.  

• The block accepts one input and generates one output, 
both of which can be scalar or vector. If the input is a 
vector, all elements of the vector are held for the same 
sample period. 

• This device provides a mechanism for discretizing one or 
more signals in time, or resampling the signal at a 
different rate.  

• The sample rate of the Zero-Order Hold must be set to 
that of the slower block. For slow-to-fast transitions, use 
the unit delay block.  
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The z-Transform 
The z-Transform is used to take discrete time domain signals into a complex-

variable frequency domain. It plays a similar role to the one the Laplace 

transform does in the continuous time domain. The z-transform opens up new 

ways of solving problems and designing discrete domain applications. The z-

transform converts a discrete time domain signal, which is a sequence of real 

numbers, into a complex frequency domain representation. 
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Transfer Function of Open-Loop System 
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Closed-Loop Feedback Sampled-Data Systems 
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Now Let us Continue with the Closed-Loop System for the 

Same Problem 
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Stability 
• The difference between the stability of the continuous 

system and digital system is the effect of sampling rate 

on the transient response. 

• Changes in sampling rate not only change the nature of 

the response from overdamped to underdamped, but 

also can turn the system to an unstable. 

• Stability of a digital system can be discussed from two 

perspectives: 

• z-plane 

• s-plane 
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Stability Analysis in the z-Plane 

 
A linear continuous feedback control system is stable if all poles of the 

closed-loop transfer function T(s) lie in the left half of the s-plane. 

 

In the left-hand s-plane,   0; therefore, the related magnitude of z 

varies between 0 and 1. Accordingly the imaginary axis of the s-plane 

corresponds to the unit circle in the z-plane, and the inside of the unit 

circle corresponds to the left half of the s-plane. 

 

A sampled system is stable if all the poles of the closed-loop transfer 

function T(z) lie within the unit circle of the z-plane. 
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Example: Stability of a closed-loop system 
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Steady State Error and System Type 
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Design of Digital Control Systems 

The Procedure: 

 

• Start with continuous system. 

• Add sampled-data system elements. 

• Chose sample period, usually small but not too small. 

Use sampling period T = 1 / 10 fB, where fB = B / 2 and 

B is the bandwidth of the closed-loop system. 

– Practical limit for sampling frequency: 20 ˂ s / B ˃40 

• Digitize control law. 

• Check performance using discrete model or SIMULINK. 
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Start with a Continuous Design 

D(s) may be given as an existing design or by using root 

locus or bode design. 
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D(z) 
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Add Samples Necessary for Digital Control 

• Transform D(s) to D(z): We will obtain a discrete system 
with a similar behavior to the continuous one. 

 

• Include D/A converter, usually a zero-order-device. 

 

• Include A/D converter modeled as an ideal sampler. 

 

• And an antialiasing filter, a low pass filter, unity gain filter 
with a sharp cutoff frequency. 

 

• Chose a sample frequency based on the closed-loop 
bandwidth B  of the continuous system. 



34 

Closed-Loop System with Digital Computer Compensation 
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Compensation Networks (10.3; page 747) 
The compensation network, Gc(s) is cascaded with the unalterable process 

G(s) in order to provide a suitable loop transfer function Gc(s)G(s)H(s). 
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Closed-Loop System with Digital Computer Compensation 
There are two methods of compensator design:  

(1) Gc(s)-to-D(z) conversion method, and  

(2) Root locus z-plane method. 
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The Frequency Response 

The frequency response of a system is defined as the 

steady-state response of the system to a sinusoidal input 

signal.   

The sinusoid is a unique input signal, and the resulting 

output signal for a linear system, as well as signals 

throughout the system, is sinusoidal in the steady-state; it 

differs form the input waveform only in amplitude and 

phase. 
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Phase-Lead Compensator Using Frequency Response 
 

A first-order phase-lead compensator can be designed using the frequency 

response. A lead compensator in frequency response form is given by  

 

 

 

 

 

In frequency response design, the phase-lead compensator adds positive phase to 

the system over the frequency range. A bode plot of a phase-lead compensator 

looks like the following  

 

Gc s( )
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 1
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Phase-Lead Compensator Using Frequency Response 

 

Additional positive phase increases the phase margin and 

thus increases the stability of the system. This type of 

compensator is designed by determining alfa from the 

amount of phase needed to satisfy the phase margin 

requirements.  

 

Another effect of the lead compensator can be seen in the 

magnitude plot. The lead compensator increases the gain of 

the system at high frequencies (the amount of this gain is 

equal to alfa. This can increase the crossover frequency, 

which will help to decrease the rise time and settling time of 

the system.  
 



Phase-Lag Compensator Using Root Locus 
 

A first-order lag compensator can be designed using the root locus. A lag 

compensator in root locus form is given by  

 

 

 

 

 

where the magnitude of z is greater than the magnitude of p. A phase-lag 

compensator tends to shift the root locus to the right, which is undesirable. For this 

reason, the pole and zero of a lag compensator must be placed close together 

(usually near the origin) so they do not appreciably change the transient response 

or stability characteristics of the system.  

  

When a lag compensator is added to a system, the value of this intersection will be 

a smaller negative number than it was before. The net number of zeros and poles 

will be the same (one zero and one pole are added), but the added pole is a 

smaller negative number than the added zero. Thus, the result of a lag 

compensator is that the asymptotes' intersection is moved closer to the right half 

plane, and the entire root locus will be shifted to the right.  

Gc s( )
s z( )

s p( )



Lag or Phase-Lag Compensator using Frequency Response 

 
A first-order phase-lag compensator can be designed using the frequency 

response. A lag compensator in frequency response form is given by  

 

  

 

 

The phase-lag compensator looks similar to a phase-lead compensator, except 

that a is now less than 1. The main difference is that the lag compensator adds 

negative phase to the system over the specified frequency range, while a lead 

compensator adds positive phase over the specified frequency. A bode plot of a 

phase-lag compensator looks like the following  

 

Gc s( )
1   s 

 1  s 
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Example: Design to meet a Phase Margin Specification 
Based on Chapter 10 (Dorf): Example 13.7 
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The Root Locus of Digital Control Systems 
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Design of a Digital Controller 
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Example: Design of a digital compensator 
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P13.10 Dorf 
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P13.11 Dorf 
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