ELG4157/SYS5100 Control Systems Engineering

Chapter 2

Modeling in the Frequency Domain

A System!

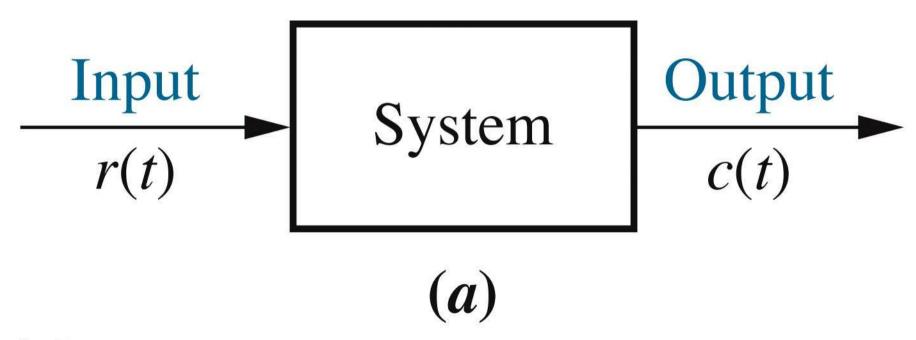
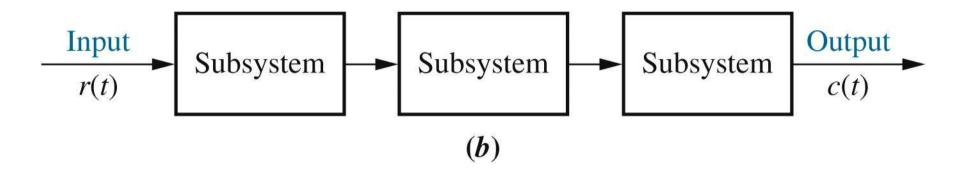


Figure 2.1a © John Wiley & Sons, Inc. All rights reserved.

Interconnection of Subsystems



Note: The input, r(t), stands for reference input. The output, c(t), stands for controlled variable.

Figure 2.1b

Sons, Inc. All rights reserved.

Laplace Transform

- Laplace Transforms: method for solving differential equations, converts differential equations in time *t* into algebraic equations in complex variable *s*.
- Transfer Functions: another way to represent system dynamics, via the s representation gotten from Laplace transforms, or excitation by e^{st} .

 TABLE 2.1
 Laplace transform table

Item no.	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{1}{s^2}$
4.	$t^n u(t)$	$\frac{n!}{s^n+1}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$

Table 2.1

[©] John Wiley & Sons, Inc. All rights reserved.

TABLE 2.2 Laplace transform theorems

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	=kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2($	$[t)] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathcal{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\big[\int_{0-}^{t} f(\tau)d\tau$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty} sF(s)$	Initial value theorem ²

¹For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no more than one can be at the origin.

Table 2.2

²For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (that is, no impulses or their derivatives at t = 0).

[©] John Wiley & Sons, Inc. All rights reserved.

Transfer Function

- Method to represent system dynamics, via *s* representation from Laplace transforms.
- Transfer functions show flow of signal through a system, from input to output.
- Method gives system dynamics representation equivalent to
 - Ordinary differential equations.
 - State equations.

The Transfer Function

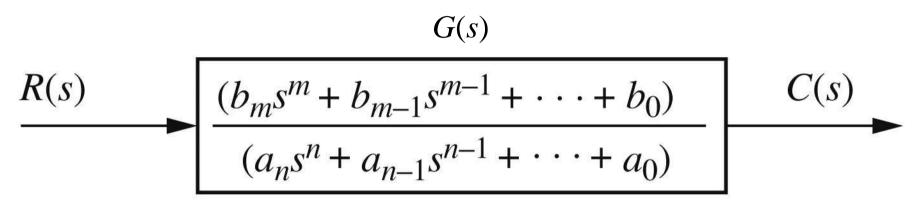
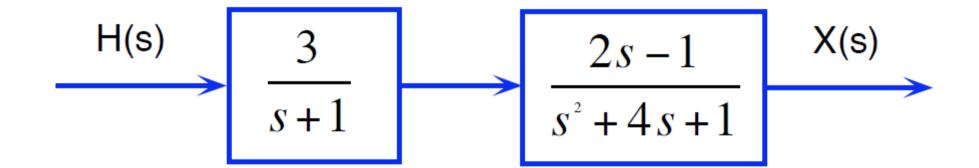


Figure 2.2

© John Wiley & Sons, Inc. All rights reserved.

$$C(s) = R(s)G(s)$$



• Transfer function:

$$G(s) = \frac{X(s)}{H(s)} = G_{1}(s)G_{2}(s) = \frac{3}{s+1} \cdot \frac{2s-1}{s^{2}+4s+1}$$

$$G(s) = \frac{3(2s-1)}{(s+1)(s^2+4s+1)} = \frac{6s-3}{s^3+5s^2+5s+1}$$

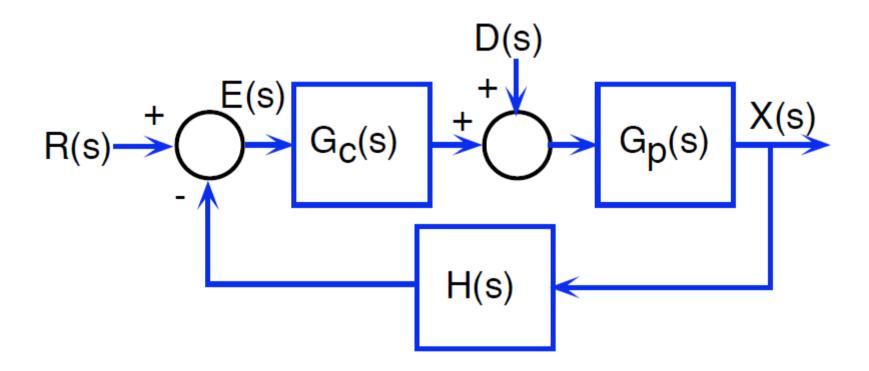
 <u>Poles</u> = roots of denominator (values of s such that transfer function becomes infinite)

$$p_1 = -1$$
, $p_2, p_3 = -2 \pm \sqrt{3}$

• <u>Zeros</u> = roots of numerator (values of *s* such that transfer function becomes 0)

$$z_1 = 1/2$$

Transfer Function Input Signal and Disturbance



$$G_{cl}(s) = \frac{X(s)}{R(s)} = \frac{G_{c}(s)G_{p}(s)}{1 + G_{c}(s)G_{p}(s)H(s)}$$

■ Transfer function, disturbance (set R(s) = 0)

$$G_{d}(s) = \frac{X(s)}{D(s)} = \frac{G_{p}(s)}{1 + G_{c}(s)G_{p}(s)H(s)}$$

TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) - V (volts), i(t) - A (amps), q(t) - Q (coulombs), C - F (farads), $R - \Omega$ (ohms), $G - \Omega$ (mhos), L - H (henries).

Table 2.3 © John Wiley & Sons, Inc. All rights reserved.

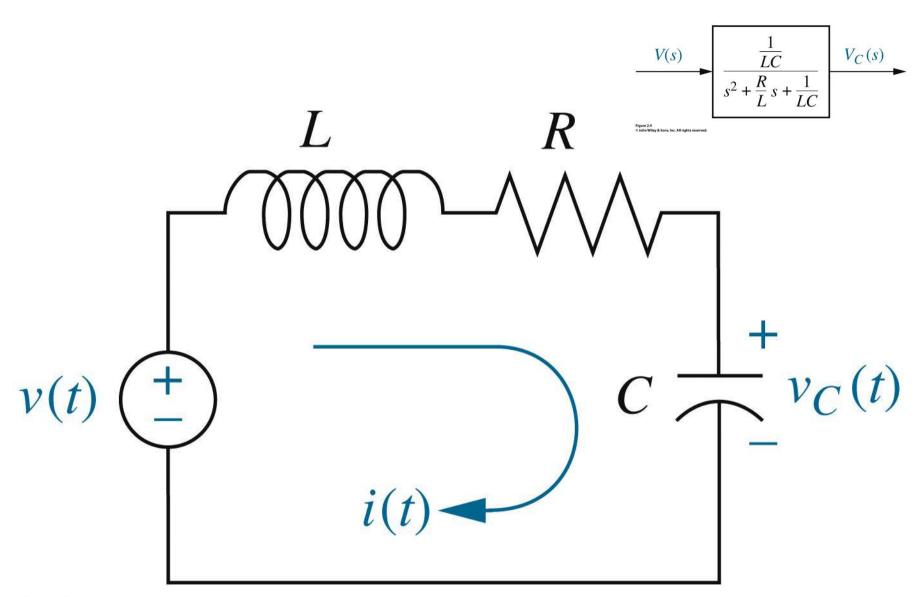


Figure 2.3 © John Wiley & Sons, Inc. All rights reserved.

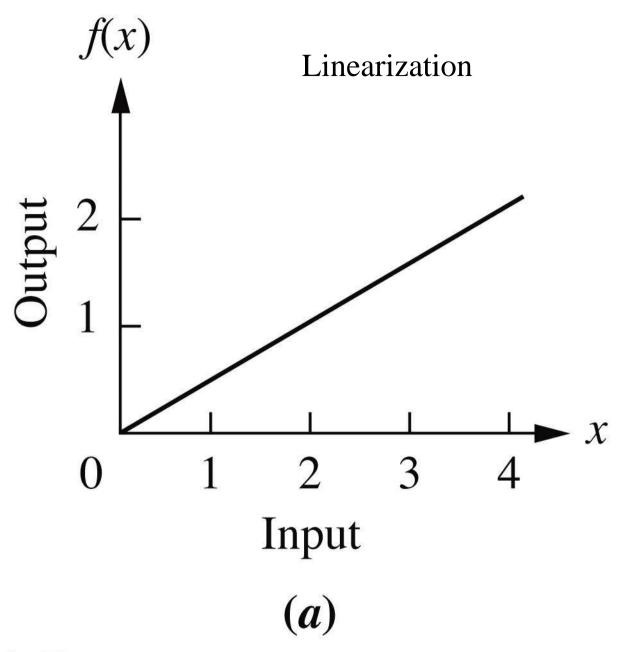


Figure 2.45a © John Wiley & Sons, Inc. All rights reserved.

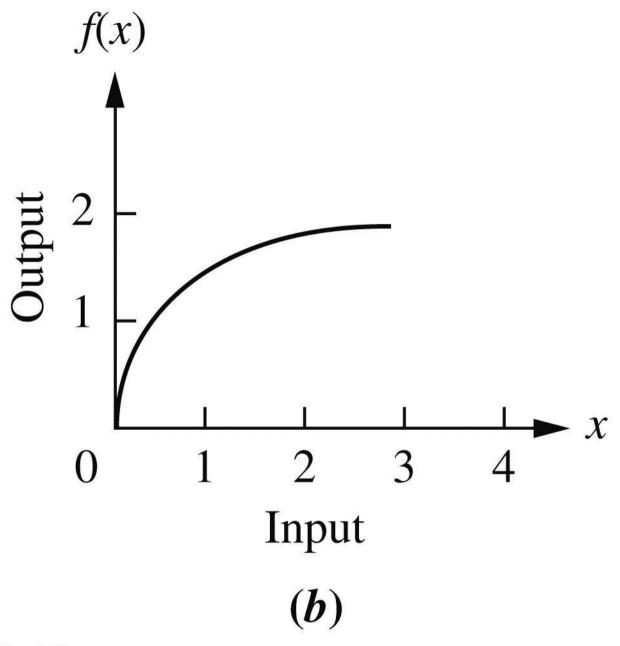


Figure 2.45b

© John Wiley & Sons, Inc. All rights reserved.

Block Diagrams

